SOLUTION TO BIHARMONIC EQUATION WITH VANISHING POTENTIAL

被引:6
作者
Bastos, Waldemar D. [1 ]
Miyagaki, Olimpio H. [2 ]
Vieira, Ronei S. [3 ]
机构
[1] Univ Estadual Paulista, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Univ Fed Juiz de Fora, BR-36036330 Juiz De Fora, Brazil
[3] Ctr Fed Educ Tecnol Minas Gerais, BR-35503822 Divinopolis, MG, Brazil
关键词
POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; EXISTENCE;
D O I
10.1215/ijm/1415023513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a result on the existence of nontrivial solution for the following class of biharmonic elliptic equation [GRAPHICS] where Delta(2)u = Delta(Delta u), V and K are nonnegative potentials. K vanishes at infinity and f has a subcritical growth at infinity. The technique used here is the variational approach.
引用
收藏
页码:839 / 854
页数:16
相关论文
共 23 条
[1]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[2]   On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on R [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Monari Soares, Sergio H. .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (14-15) :1784-1795
[3]   On a class of singular biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) :12-26
[4]  
Alves CO, 2002, ADV NONLINEAR STUD, V2, P437
[5]   Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents [J].
Alves, CO ;
do O, JM ;
Miyagaki, OH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (01) :121-133
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[8]   NONLINEAR BIHARMONIC PROBLEMS WITH SINGULAR POTENTIALS [J].
Carriao, P. . C. . ;
Demarque, R. ;
Miyagaki, O. H. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) :2141-2154
[9]   On some fourth-order semilinear elliptic problems in RN [J].
Chabrowski, J ;
do O, JM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 49 (06) :861-884
[10]  
Demarque R., RADIAL SOLUTIONS INH