Identifying influential nodes in complex networks based on the inverse-square law

被引:110
|
作者
Fei, Liguo [1 ,3 ]
Zhang, Qi [2 ]
Deng, Yong [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[2] Leiden Univ, Lorentz Inst Theoret Phys, POB 9504, NL-2300 RA Leiden, Netherlands
[3] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex networks; Influential nodes; Inverse-square law; Intensity; SI model; SIMILARITY MEASURE; WEIGHTED NETWORKS; CENTRALITY; DYNAMICS; IDENTIFICATION; UNCERTAINTY; SPREADERS;
D O I
10.1016/j.physa.2018.08.135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
How to identify influential nodes in complex networks continues to be an open issue. A number of centrality measures have been presented to address this problem. However, these studies focus only on a centrality measure and each centrality measure has its own shortcomings and limitations. To solve problems above, in this paper, a novel method is proposed to identify influential nodes based on the inverse-square law. The mutual attraction between different nodes has been defined in complex network, which is inversely proportional to the square of the distance between two nodes. Then, the definition of intensity of node in a complex network is proposed and described as the sum of attraction between a pair of nodes in the network. The ranking method is presented based on the intensity of node, which can be considered as the influence of the node. In order to illustrate the effectiveness of the proposed method, several experiments are conducted to identify vital nodes simulations on four real networks, and the superiority of the proposed method can be demonstrated by the results of comparison experiments. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1044 / 1059
页数:16
相关论文
共 50 条
  • [41] An improved gravity model for identifying influential nodes in complex networks considering asymmetric attraction effect
    Meng, Lei
    Xu, Guiqiong
    Dong, Chen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 657
  • [42] Identifying influential nodes for the networks with community structure
    Zhao, Zi-Juan
    Guo, Qiang
    Yu, Kai
    Liu, Jian-Guo
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 551
  • [43] LFIC: Identifying Influential Nodes in Complex Networks by Local Fuzzy Information Centrality
    Zhang, Haotian
    Zhong, Shen
    Deng, Yong
    Cheong, Kang Hao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 3284 - 3296
  • [44] A novel potential edge weight method for identifying influential nodes in complex networks based on neighborhood and position
    Meng, Lei
    Xu, Guiqiong
    Yang, Pingle
    Tu, Dengqin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 60
  • [45] Identifying Influential Nodes in Complex Networks Based on Multi-Information Fused Degree of Grey Incidence
    Zhang, Jinhua
    Zhang, Qishan
    Wu, Ling
    Weng, Lijuan
    Yuan, Xiaojian
    Zhang, Jinxin
    JOURNAL OF GREY SYSTEM, 2023, 35 (02)
  • [46] Isolating Coefficient-Based Framework to Recognize Influential Nodes in Complex Networks
    Mohammad, Buran Basha
    Dhuli, V. Sateeshkrishna
    Enduri, Murali Krishna
    Cenkeramaddi, Linga Reddy
    IEEE ACCESS, 2024, 12 : 183875 - 183900
  • [47] Identifying critical nodes in complex networks based on neighborhood information
    Zhao, Na
    Wang, Hao
    Wen, Jun-jie
    Li, Jie
    Jing, Ming
    Wang, Jian
    NEW JOURNAL OF PHYSICS, 2023, 25 (08):
  • [48] Identifying influential nodes on directed networks
    Lee, Yan-Li
    Wen, Yi-Fei
    Xie, Wen -Bo
    Pan, Liming
    Du, Yajun
    Zhou, Tao
    INFORMATION SCIENCES, 2024, 677
  • [49] Identifying critical nodes in complex networks via graph convolutional networks
    Yu, En-Yu
    Wang, Yue-Ping
    Fu, Yan
    Chen, Duan-Bing
    Xie, Mei
    KNOWLEDGE-BASED SYSTEMS, 2020, 198
  • [50] Identifying Influential Nodes in Complex Networks From Semi-Local and Global Perspective
    Liu, Wenzhi
    Lu, Pengli
    Zhang, Teng
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02) : 2105 - 2120