Identifying influential nodes in complex networks based on the inverse-square law

被引:109
|
作者
Fei, Liguo [1 ,3 ]
Zhang, Qi [2 ]
Deng, Yong [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[2] Leiden Univ, Lorentz Inst Theoret Phys, POB 9504, NL-2300 RA Leiden, Netherlands
[3] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex networks; Influential nodes; Inverse-square law; Intensity; SI model; SIMILARITY MEASURE; WEIGHTED NETWORKS; CENTRALITY; DYNAMICS; IDENTIFICATION; UNCERTAINTY; SPREADERS;
D O I
10.1016/j.physa.2018.08.135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
How to identify influential nodes in complex networks continues to be an open issue. A number of centrality measures have been presented to address this problem. However, these studies focus only on a centrality measure and each centrality measure has its own shortcomings and limitations. To solve problems above, in this paper, a novel method is proposed to identify influential nodes based on the inverse-square law. The mutual attraction between different nodes has been defined in complex network, which is inversely proportional to the square of the distance between two nodes. Then, the definition of intensity of node in a complex network is proposed and described as the sum of attraction between a pair of nodes in the network. The ranking method is presented based on the intensity of node, which can be considered as the influence of the node. In order to illustrate the effectiveness of the proposed method, several experiments are conducted to identify vital nodes simulations on four real networks, and the superiority of the proposed method can be demonstrated by the results of comparison experiments. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1044 / 1059
页数:16
相关论文
共 50 条
  • [1] Identifying influential nodes in complex networks based on AHP
    Bian, Tian
    Hu, Jiantao
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 479 : 422 - 436
  • [2] Identifying influential nodes in complex networks
    Chen, Duanbing
    Lu, Linyuan
    Shang, Ming-Sheng
    Zhang, Yi-Cheng
    Zhou, Tao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1777 - 1787
  • [3] Identifying influential nodes in complex networks based on expansion factor
    Liu, Dong
    Jing, Yun
    Chang, Baofang
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [4] Identifying influential nodes in complex networks based on spreading probability
    Ai, Jun
    He, Tao
    Su, Zhan
    Shang, Lihui
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [5] Identifying influential nodes in complex networks based on Neighbours and edges
    Zengzhen Shao
    Shulei Liu
    Yanyu Zhao
    Yanxiu Liu
    Peer-to-Peer Networking and Applications, 2019, 12 : 1528 - 1537
  • [6] APPLICATIONS OF THE INVERSE-SQUARE LAW
    LANDAUER, RS
    RADIOLOGY, 1945, 45 (04) : 400 - 400
  • [7] INVERSE-SQUARE LAW (EXPERIMENT)
    SALEM, SI
    CHRISTIANSEN, RG
    AMERICAN JOURNAL OF PHYSICS, 1969, 37 (11) : 1158 - +
  • [8] INVERSE-SQUARE LAW EXPERIMENT
    LUFBURROW, RA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (01) : 60 - +
  • [9] Identifying influential nodes based on graph signal processing in complex networks
    赵佳
    喻莉
    李静茹
    周鹏
    Chinese Physics B, 2015, (05) : 643 - 652
  • [10] Identifying Influential Nodes in Complex Networks Based on Neighborhood Entropy Centrality
    Qiu, Liqing
    Zhang, Jianyi
    Tian, Xiangbo
    Zhang, Shuang
    COMPUTER JOURNAL, 2021, 64 (10): : 1465 - 1476