Manganese modified zeolite silicalite-1 as polysulphide sorbent in lithium sulphur batteries

被引:35
作者
Lapornik, Vida [1 ]
Tusar, Natasa Novak [1 ,2 ]
Ristic, Alenka [1 ]
Chellappan, Rajesh Kumar [3 ]
Foix, Dominique [3 ,4 ]
Dedryvere, Remi [3 ,4 ]
Gaberscek, Miran [1 ,2 ,4 ]
Dominko, Robert [1 ,4 ]
机构
[1] Natl Inst Chem, Lab Mat Chem, Hajdrihova 19, Ljubljana 1000, Slovenia
[2] Ctr Excellence Low Carbon Technol, Ljubljana 1000, Slovenia
[3] Univ Pau, IPREM ECP UMR CNRS 5254, F-64053 Pau 9, France
[4] Alistore European Res Inst, F-80039 Amiens, France
关键词
Lithium battery; Sulphur cathode; Sorption; Polysulphides; Cycling stability; LI-S BATTERIES; ELECTROCHEMICAL PROPERTIES; CATHODE MATERIAL; PERFORMANCE; POROSITY;
D O I
10.1016/j.jpowsour.2014.10.184
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Discharge/charge process of classical lithium sulphur battery proceeds through intermediate polysulphides which are soluble in classical electrolyte systems. Due to concentration gradient soluble polysulphides easily diffuse/migrate out from cathode composite forming non-uniform distribution of the sulphur within cathode. Eventually polysulphides can be completely reduced on the metallic lithium anode. In this work we compare the sorption properties of manganese modified zeolite silicalite-1 (MnS-1) with a cathode composite containing SBA-15 additive and a cathode composite without additive. Careful analysis using XPS and FIB microscopy equipped with EDX show improved retention of polysulphide species within cathode composite in the case of MnS-1 zeolite as an additive. Interestingly, the amount of sulphur species detected by XPS on the metallic lithium is very similar regardless on cathode composite we use. Finally, similar cycling behaviour can be observed if MnS-1 zeolite is used as an interlayer between composite cathode and separator. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1239 / 1248
页数:10
相关论文
共 38 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Baerlocher Ch., 2007, ATLAS ZEOLITE STRUCT, V6th
  • [3] Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review
    Bresser, Dominic
    Passerini, Stefano
    Scrosati, Bruno
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (90) : 10545 - 10562
  • [4] Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes
    Choi, Jae-Won
    Kim, Jin-Kyu
    Cheruvally, Gouri
    Ahn, Jou-Hyeon
    Ahn, Hyo-Jun
    Kim, Ki-Won
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (05) : 2075 - 2082
  • [5] Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell
    Choi, Y. J.
    Jung, B. S.
    Lee, D. J.
    Jeong, J. H.
    Kim, K. W.
    Ahn, H. J.
    Cho, K. K.
    Gu, H. B.
    [J]. PHYSICA SCRIPTA, 2007, T129 : 62 - 65
  • [6] Li-S batteries: simple approaches for superior performance
    Demir-Cakan, Rezan
    Morcrette, Mathieu
    Gangulibabu
    Gueguen, Aurelie
    Dedryvere, Remi
    Tarascon, Jean-Marie
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (01) : 176 - 182
  • [7] Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures
    Demir-Cakan, Rezan
    Morcrette, Mathieu
    Nouar, Farid
    Davoisne, Carine
    Devic, Thomas
    Gonbeau, Danielle
    Dominko, Robert
    Serre, Christian
    Ferey, Gerard
    Tarascon, Jean-Marie
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (40) : 16154 - 16160
  • [8] Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery
    Ding, Bing
    Shen, Laifa
    Xu, Guiyin
    Nie, Ping
    Zhang, Xiaogang
    [J]. ELECTROCHIMICA ACTA, 2013, 107 : 78 - 84
  • [9] Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries
    Dong, Kang
    Wang, Shengping
    Zhang, Hanyu
    Wu, Jinping
    [J]. MATERIALS RESEARCH BULLETIN, 2013, 48 (06) : 2079 - 2083
  • [10] Erers S., 2012, ACCOUNTS CHEM RES, V46, P1135