Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation

被引:58
作者
Hung, WL [1 ]
Yang, MS
机构
[1] Natl Hsinchu Teachers Coll, Dept Math Educ, Hsinchu 30014, Taiwan
[2] Chung Yuan Christian Univ, Dept Appl Math, Chungli, Taiwan
关键词
alternative fuzzy c-numbers clustering; fUZZY clustering; fuzzy c-partition; fuzzy c-numbers clustering; LR-type fuzzy numbers;
D O I
10.1016/j.fss.2004.04.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a fuzzy clustering algorithm, called the alternative fuzzy c-numbers (AFCN) clustering algorithm, for LR-type fuzzy numbers based on an exponential-type distance function. On the basis of the gross error sensitivity and influence function, this exponential-type distance is claimed to be robust with respect to noise and outliers. Hence, the AFCN clustering algorithm is more robust than the fuzzy c-numbers (FCN) clustering algorithm presented by Yang and Ko (Fuzzy Sets and Systems 84 (1996) 49). Some numerical experiments were performed to assess the performance of FCN and AFCN. Numerical results clearly indicate AFCN to be superior in performance to FCN. Finally, we apply the FCN and AFCN algorithms to real data. The experimental results show the superiority of AFCN in Taiwanese tea evaluation. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:561 / 577
页数:17
相关论文
共 14 条
[1]  
[Anonymous], 1991, FUZZY SET THEORY ITS
[2]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[3]  
Bezdek J. C., 1973, Journal of Cybernetics, V3, P58, DOI 10.1080/01969727308546047
[4]   CLUSTER SEPARATION MEASURE [J].
DAVIES, DL ;
BOULDIN, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (02) :224-227
[5]  
Duda R. O., 2000, PATTERN CLASSIFICATI
[6]   ON STATISTICAL-INFERENCE FOR FUZZY DATA WITH APPLICATIONS TO DESCRIPTIVE STATISTICS [J].
FRUHWIRTHSCHNATTER, S .
FUZZY SETS AND SYSTEMS, 1992, 50 (02) :143-165
[7]  
Hoppner F., 1999, FUZZY CLUSTER ANAL M
[8]  
Huber P. J., 1981, WILEY SERIES PROBABI
[9]   ON CLUSTER VALIDITY FOR THE FUZZY C-MEANS MODEL [J].
PAL, NR ;
BEZDEK, JC .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1995, 3 (03) :370-379
[10]   Alternative c-means clustering algorithms [J].
Wu, KL ;
Yang, MS .
PATTERN RECOGNITION, 2002, 35 (10) :2267-2278