PURELY 1-UNRECTIFIABLE METRIC SPACES AND LOCALLY FLAT LIPSCHITZ FUNCTIONS

被引:23
作者
Aliaga, Ramon J. [1 ]
Gartland, Chris [2 ]
Petitjean, Colin [3 ]
Prochazka, Antonin [4 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] Univ Gustave Eiffel, UNIV Paris Est Creteil, UPEM, LAMA,CNRS, F-77447 Marne La Vallee, France
[4] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, F-25030 Besancon, France
关键词
Purely; 1-unrectifiable; Radon-Nikodym property; Whitney arc; Lipschitz-free space; locally flat Lipschitz function; ARCS; NORM;
D O I
10.1090/tran/8591
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize compact metric spaces whose locally flat Lip-schitz functions separate points uniformly as exactly those that are purely 1-unrectifiable, resolving a problem of Weaver. We subsequently use this geometric characterization to answer several questions in Lipschitz analysis. Notably, it follows that the Lipschitz-free space F(M) over a compact metric space M is a dual space if and only if M is purely 1-unrectifiable. Furthermore, we establish a compact determinacy principle for the Radon-Nikodym property (RNP) and deduce that, for any complete metric space M, pure 1-unrectifiability is actually equivalent to some well-known Banach space properties of F(M) such as the RNP and the Schur property. A direct consequence is that any complete, purely 1-unrectifiable metric space isometrically embeds into a Banach space with the RNP. Finally, we provide a possible solution to a problem of Whitney by finding a rectifiability-based description of 1-critical compact metric spaces, and we use this description to prove the following: a bounded turning tree fails to be 1-critical if and only if each of its subarcs has sigma-finite Hausdorff 1-measure.
引用
收藏
页码:3529 / 3567
页数:39
相关论文
共 60 条
[1]   Lipschitz Algebras and Lipschitz-Free Spaces Over Unbounded Metric Spaces [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Cuth, Marek ;
Doucha, Michal .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (20) :16327-16362
[2]   Compact reduction in Lipschitz-free spaces [J].
Aliaga, Ramon J. ;
Nous, Camille ;
Petitjean, Colin ;
Prochazka, Antonin .
STUDIA MATHEMATICA, 2021, 260 (03) :341-359
[3]   Embeddings of Lipschitz-free spaces into l1 [J].
Aliaga, Ramon J. ;
Petitjean, Colin ;
Prochazka, Antonin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
[4]   Supports in Lipschitz-free spaces and applications to extremal structure [J].
Aliaga, Ramon J. ;
Pernecka, Eva ;
Petitjean, Colin ;
Prochazka, Antonin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
[5]   Linear extension operators between spaces of Lipschitz maps and optimal transport [J].
Ambrosio, Luigi ;
Puglisi, Daniele .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 :1-21
[6]  
BADE WG, 1987, P LOND MATH SOC, V55, P359
[8]  
Bate D, 2017, ANN SCI ECOLE NORM S, V50, P1
[9]  
Bate D, 2015, J AM MATH SOC, V28, P421
[10]   Quasiconformal and geodesic trees [J].
Bonk, Mario ;
Meyer, Daniel .
FUNDAMENTA MATHEMATICAE, 2020, 250 (03) :253-299