Arithmetic operators in interval-valued fuzzy set theory

被引:130
作者
Deschrijver, Glad [1 ]
机构
[1] Univ Ghent, Dept Math & Comp Sci, Fuzziness & Uncertainty Modelling Res Unit, B-9000 Ghent, Belgium
关键词
t-norm on L-1; arithmetic operators on L-1; sum; difference; product; quotient; addition; subtraction; multiplication;
D O I
10.1016/j.ins.2007.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the addition, subtraction, multiplication and division on L-1, where L-1 is the underlying lattice of both interval-valued fuzzy set theory [R. Sambuc, Fonctions Phi-floues. Application l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis, Universite de Marseille, France, 1975] and intuitionistic fuzzy set theory [K.T. Atanassov, Intuitionistic, fuzzy sets, 1983, VII ITKR's Session, Sofia (deposed in Central Sci. Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)]. We investigate some algebraic properties of these operators. We show that using these operators the pseudo-t-representable extensions of the Lukasiewicz t-norm and the product t-norm on the unit interval to L-1 and some related operators can be written in a similar way as their counterparts on ([0,1],<=). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2906 / 2924
页数:19
相关论文
共 35 条
  • [1] Soft sets and soft groups
    Aktas, Haci
    Cagman, Naim
    [J]. INFORMATION SCIENCES, 2007, 177 (13) : 2726 - 2735
  • [2] Atanassov K. T., 1999, INTUITIONISTIC FUZZY
  • [3] INTUITIONISTIC FUZZY-SETS
    ATANASSOV, KT
    [J]. FUZZY SETS AND SYSTEMS, 1986, 20 (01) : 87 - 96
  • [4] ATANASSOV KT, 1983, INTUITIONISTIC FUZZ
  • [5] ATANASSOV KT, 2001, NOTES INTUITIONISTIC, V7, P37
  • [6] Cornelis C, 2003, LECT NOTES ARTIF INT, V2711, P345
  • [7] Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application
    Cornelis, C
    Deschrijver, G
    Kerre, EE
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2004, 35 (01) : 55 - 95
  • [8] Advances and challenges in interval-valued fuzzy logic
    Cornelis, C
    Deschrijver, G
    Kerre, EE
    [J]. FUZZY SETS AND SYSTEMS, 2006, 157 (05) : 622 - 627
  • [9] Triangular norms on product lattices
    De Baets, B
    Mesiar, R
    [J]. FUZZY SETS AND SYSTEMS, 1999, 104 (01) : 61 - 75
  • [10] Smets-Magrez axioms for R-implicators in interval-valued and intuitionistic fuzzy set theory
    Deschrijver, G
    Kerre, EE
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2005, 13 (04) : 453 - 464