Arithmetic operators in interval-valued fuzzy set theory

被引:129
作者
Deschrijver, Glad [1 ]
机构
[1] Univ Ghent, Dept Math & Comp Sci, Fuzziness & Uncertainty Modelling Res Unit, B-9000 Ghent, Belgium
关键词
t-norm on L-1; arithmetic operators on L-1; sum; difference; product; quotient; addition; subtraction; multiplication;
D O I
10.1016/j.ins.2007.02.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the addition, subtraction, multiplication and division on L-1, where L-1 is the underlying lattice of both interval-valued fuzzy set theory [R. Sambuc, Fonctions Phi-floues. Application l'aide au diagnostic en pathologie thyroidienne, Ph.D. Thesis, Universite de Marseille, France, 1975] and intuitionistic fuzzy set theory [K.T. Atanassov, Intuitionistic, fuzzy sets, 1983, VII ITKR's Session, Sofia (deposed in Central Sci. Technical Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian)]. We investigate some algebraic properties of these operators. We show that using these operators the pseudo-t-representable extensions of the Lukasiewicz t-norm and the product t-norm on the unit interval to L-1 and some related operators can be written in a similar way as their counterparts on ([0,1],<=). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2906 / 2924
页数:19
相关论文
共 35 条
[1]   Soft sets and soft groups [J].
Aktas, Haci ;
Cagman, Naim .
INFORMATION SCIENCES, 2007, 177 (13) :2726-2735
[2]  
Atanassov K. T., 1999, INTUITIONISTIC FUZZY
[3]   INTUITIONISTIC FUZZY-SETS [J].
ATANASSOV, KT .
FUZZY SETS AND SYSTEMS, 1986, 20 (01) :87-96
[4]  
ATANASSOV KT, 1983, INTUITIONISTIC FUZZ
[5]  
ATANASSOV KT, 2001, NOTES INTUITIONISTIC, V7, P37
[6]  
Cornelis C, 2003, LECT NOTES ARTIF INT, V2711, P345
[7]   Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application [J].
Cornelis, C ;
Deschrijver, G ;
Kerre, EE .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2004, 35 (01) :55-95
[8]   Advances and challenges in interval-valued fuzzy logic [J].
Cornelis, C ;
Deschrijver, G ;
Kerre, EE .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :622-627
[9]   Triangular norms on product lattices [J].
De Baets, B ;
Mesiar, R .
FUZZY SETS AND SYSTEMS, 1999, 104 (01) :61-75
[10]   Smets-Magrez axioms for R-implicators in interval-valued and intuitionistic fuzzy set theory [J].
Deschrijver, G ;
Kerre, EE .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2005, 13 (04) :453-464