ON THE UNIQUENESS OF D-VERTEX MAGIC CONSTANT

被引:7
作者
Arumugam, S. [1 ,3 ,4 ,5 ]
Kamatchi, N. [1 ]
Vijayakumar, G. R. [2 ]
机构
[1] Kalasalingam Univ, Natl Ctr Adv Res Discrete Math N CARDMATH, Krishnankoil 626126, Tamil Nadu, India
[2] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[3] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
[4] Liverpool Hope Univ, Dept Comp Sci, Liverpool, Merseyside, England
[5] Ball State Univ, Dept Comp Sci, Muncie, IN 47306 USA
关键词
distance magic graph; D-vertex magic graph; magic constant; dominating function; fractional domination number;
D O I
10.7151/dmgt.1728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph of order n and let D subset of {0, I, 2, 3,...}. For v is an element of V, let N-D(v) = {u is an element of V : d(u, v) is an element of D}. The graph G is said to be D-vertex magic if there exists a bijection f : V(G) -> {I, 2,..., n} such that for all v is an element of v, Sigma(u is an element of ND(v)) f(u) is a constant, called D-vertex magic constant. O'Neal and Slater have proved the uniqueness of the D-vertex magic constant by showing that it can be determined by the D-neighborhood fractional domination number of the graph. In this paper we give a simple and elegant proof of this result. Using this result, we investigate the existence of distance magic labelings of complete r-partite graphs where r >= 4.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 10 条
[1]  
Arumugam S, 2011, J INDONES MATH SOC, P11
[2]   On Σ and Σ′ labelled graphs [J].
Beena, S. .
DISCRETE MATHEMATICS, 2009, 309 (06) :1783-1787
[3]  
Chartrand G., 2005, Graphs and Digraphs, VFourth
[4]  
Grinstead D.L., 1990, CONGR NUMER CONF J N, V71, P153
[5]  
Haynes T. W., 1988, DOMINATION GRAPHS AD
[6]  
Miller M., 2003, AUSTRALAS J COMBIN, V28, P305
[7]  
O'Neal A, 2011, J INDONES MATH SOC, P91
[8]   UNIQUENESS OF VERTEX MAGIC CONSTANTS [J].
O'Neal, Allen ;
Slater, Peter J. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) :708-716
[9]  
Sugeng K. A., 2009, Journal of Combinatorial Mathematics and Combinatorial Computing, V71, P39
[10]  
Vilfred V., 1994, THESIS U KERALA TRIV