Use of non-volatile compounds for the classification of specialty and traditional Brazilian coffees using principal component analysis

被引:37
作者
Alcantara, Gabriela M. R. N. [1 ]
Dresch, Dayane [1 ]
Melchert, Wanessa R. [1 ]
机构
[1] Univ Sao Paulo, Luiz Queiroz Coll Agr, Av Padua Dias 11,Box 9, BR-13418900 Piracicaba, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Coffee; Organic compound; Chromatographic profile; Chemometrics; NEAR-INFRARED SPECTROSCOPY; GREEN COFFEE; ANTIOXIDANT ACTIVITY; MASS-SPECTROMETRY; NICOTINIC-ACID; ATR-FTIR; ARABICA; CAFFEINE; ROBUSTA; DISCRIMINATION;
D O I
10.1016/j.foodchem.2021.130088
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Coffee beans contain different volatile and non-volatile compounds that are responsible for their flavor and aroma. Herein, principal component analysis (PCA) was employed to correlate the non-volatile composition of specialty and traditional coffees with drink quality. The quantified non-volatile compounds included caffeine, chlorogenic acid, caffeic acid, and nicotinic acid in both types of coffee samples, while 5-hydroxymethylfurfural was only quantified in the specialty coffee samples. The most abundant compounds present in specialty coffees were associated with the aroma and flavor, affording a high drink quality. In traditional coffees, the most abundant compounds included nicotinic acid and caffeine, indicating a stronger roasting process, loss of sensory characteristics, and blended formulations. PCA showed a distinction between the traditional and specialty coffees such that a relationship between the contents of the compounds in each type of coffee, quality, and classification could be established.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Discrimination of Arabica and Conilon Coffee from Physicochemical Properties Allied to Chemometrics [J].
Agnoletti, B. Z. ;
Oliveira, E. C. da S. ;
Pinheiro, P. F. ;
Saraiva, S. H. .
REVISTA VIRTUAL DE QUIMICA, 2019, 11 (03) :785-805
[2]   HPLC analysis of nicotinic acid, trigonelline, chlorogenic acid and caffeine in roasted coffee. [J].
Alves, Sandriel Trindade ;
Eloy Dias, Rafael Carlos ;
Benassi, Marta de Toledo ;
dos Santos Scholz, Maria Brigida .
QUIMICA NOVA, 2006, 29 (06) :1164-1168
[3]   Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends [J].
Assis, Camila ;
Pereira, Hebert Vinicius ;
Amador, Victoria Silva ;
Augusti, Rodinei ;
de Oliveira, Leandro Soares ;
Sena, Marcelo Martins .
FOOD CHEMISTRY, 2019, 281 :71-77
[4]  
Associacao Brasileira da Industria do Cafe, 2020, CAT QUAL CAF REC TEC
[5]   Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview [J].
Barbin, Douglas Fernandes ;
de Souza Madureira Felicio, Ana Lucia ;
Sun, Da-Wen ;
Nixdorf, Suzana Lucy ;
Hirooka, Elisa Yoko .
FOOD RESEARCH INTERNATIONAL, 2014, 61 :23-32
[6]   Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and chemometrics for discrimination of espresso coffees with different sensory characteristics [J].
Belchior, Veronica ;
Botelho, Bruno Goncalves ;
Oliveira, Leandro S. ;
Franca, Adriana S. .
FOOD CHEMISTRY, 2019, 273 :178-185
[7]   Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee [J].
Bona, Evandro ;
Marquetti, Izabele ;
Link, Jade Varaschim ;
Figueiredo Makimori, Gustavo Yasuo ;
Arca, Vinicius da Costa ;
Guimardes Lemes, Andre Luis ;
Garcia Ferreira, Juliana Mendes ;
dos Santos Scholz, Maria Brigida ;
Valderrama, Patricia ;
Poppi, Ronei Jesus .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2017, 76 :330-336
[8]  
Bonnlander B., 2005, ESPRESSO COFFEE SCI, V2nd, P398
[9]   Coffee flavour: an overview [J].
Buffo, RA ;
Cardelli-Freire, C .
FLAVOUR AND FRAGRANCE JOURNAL, 2004, 19 (02) :99-104
[10]  
Caballero D., 2021, Compr Foodomics, P387, DOI 10.1016/b978-0-08-100596-5.22859-x