Numerical homogenization and correctors for nonlinear elliptic equations

被引:21
作者
Efendiev, Y [1 ]
Pankov, A
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
homogenization; multiscale; upscaling; scale-up; random; nonlinear; elliptic; finite element;
D O I
10.1137/S0036139903424886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider numerical homogenization and correctors for nonlinear elliptic equations. The numerical correctors are constructed for operators with homogeneous random coefficients. The construction employs two scales, one a physical scale and the other a numerical scale. A numerical homogenization technique is proposed and analyzed. This procedure is developed within finite element formulation. The convergence of the numerical procedure is presented for the case of general heterogeneities using G-convergence theory. The proposed numerical homogenization procedure for elliptic equations can be considered as a generalization of multiscale finite element methods to nonlinear equations. Using corrector results we construct an approximation of oscillatory solutions. Numerical examples are presented.
引用
收藏
页码:43 / 68
页数:26
相关论文
共 22 条
[1]  
[Anonymous], DIFFER INTEGR EQU
[2]  
[Anonymous], 1994, HOMOGENIZATION DIFFE
[3]  
Arbogast T, 2003, CONTEMP MATH, V329, P21
[4]   SPECIAL FINITE-ELEMENT METHODS FOR A CLASS OF 2ND-ORDER ELLIPTIC PROBLEMS WITH ROUGH COEFFICIENTS [J].
BABUSKA, I ;
CALOZ, G ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (04) :945-981
[5]  
Brezzi F, 2000, CH CRC RES NOTES, V420, P69
[6]  
Deutsch C.V., 1998, GSLIB GEOSTATISTICAL
[7]  
EFENDIEV Y, UNPUB NUMER MATH
[8]  
EFENDIEV Y, UNPUB COMM MATH SCI
[9]  
ENGQUIST WE, 2003, COMM MATH SCI, V1
[10]   CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS [J].
FANNJIANG, A ;
PAPANICOLAOU, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :333-408