Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage

被引:82
作者
Zhang, Mingliang [1 ]
Wang, Haixia [1 ]
机构
[1] Univ Jinan, Sch Resources & Environm, Jinan 250022, Peoples R China
关键词
Carbon source; Sulfate reduction; Acid mine drainage; Heavy metal; HEAVY-METAL; REACTIVE MIXTURES; REMOVAL; WATER; BIOREMEDIATION; PRECIPITATION; PERFORMANCE; CONSORTIUM; REDUCTION; SUBSTRATE;
D O I
10.1016/j.mineng.2014.07.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Chicken manure, dairy manure and sawdust were evaluated as carbon sources in promoting sulfate reduction, and the mechanism of heavy metals removal in sulfidogenic bioreactor was revealed. The sulfate reduction reached 79.04% for chicken manure, 64.78% for dairy manure, and 50.27% for sawdust on 35th day, which showed that chicken manure could promote sulfate reducing bacteria (SRB) activity, followed by dairy manure and sawdust. In batch experiment, although chicken and dairy manure bioreactors showed sulfidogenic activity, it demonstrated less than 5% contribution from sulfide precipitation and over 95% from other removal mechanisms (sorption to manure particles and hydroxides precipitation, etc.). Column bioreactor showed satisfactory performance in biological remediation of acid mine drainage, evidenced by effluent Eh and pH, high removal efficiencies of sulfate and metals, and a considerable SRB counts. SEM-EDS analysis of the formed precipitate showed metal sulfides were formed. The results indicated that organic waste played an important role in sulfidogenic activity, which could not only provide reducing condition and carbon source for sulfate reduction process, but also reduce the adverse effect of heavy metal and strong acidity on SRB activity owning to metals sorption and acidity buffer of organic waste. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [21] Study on the effectiveness of sulfate-reducing bacteria to remove Pb(II) and Zn(II) in tailings and acid mine drainage
    Dong, Yanrong
    Gao, Ziqing
    Di, Junzhen
    Wang, Dong
    Yang, Zhenhua
    Guo, Xuying
    Zhu, Xiaotong
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [22] Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor
    Costa, MC
    Duarte, JC
    WATER AIR AND SOIL POLLUTION, 2005, 165 (1-4) : 325 - 345
  • [23] Bioremediation of Acid Mine Drainage Using Acidic Soil and Organic Wastes for Promoting Sulphate-Reducing Bacteria Activity on a Column Reactor
    M. C. Costa
    J. C. Duarte
    Water, Air, and Soil Pollution, 2005, 165 : 325 - 345
  • [24] Prevention of acid mine drainage by sulfate reducing bacteria: Organic substrate addition to mine waste piles
    Kim, SD
    Kilbane, JJ
    Cha, DK
    ENVIRONMENTAL ENGINEERING SCIENCE, 1999, 16 (02) : 139 - 145
  • [25] Treatment of Acid Mine Drainage (AMD) by Sulfate-Reducing Bacteria
    Qiu, Ting-Sheng
    Zhong, Chang-Ming
    Peng, Yan-Ping
    Wang, Ping
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [26] A Fixed Bed Pervious Concrete Anaerobic Bioreactor for Biological Sulphate Remediation of Acid Mine Drainage Using Simple Organic Matter
    Thisani, Sandisiwe Khanyisa
    Von Kallon, Daramy Vandi
    Byrne, Patrick
    SUSTAINABILITY, 2021, 13 (12)
  • [27] Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: Implications for acid mine drainage treatment
    Castillo, Julio
    Perez-Lopez, Rafael
    Caraballo, Manuel A.
    Nieto, Jose M.
    Martins, Monica
    Clara Costa, M.
    Olias, Manuel
    Ceron, Juan C.
    Tucoulou, Remi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 423 : 176 - 184
  • [28] Dynamics of bacterial community in up-flow anaerobic packed bed system for acid mine drainage treatment using wine wastes as carbon source
    Martins, Monica
    Faleiro, Maria Leonor
    Silva, Goncalo
    Chaves, Sandra
    Tenreiro, Rogerio
    Costa, Maria Clara
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2011, 65 (01) : 78 - 84
  • [29] The Dynamic Experiment on Treating Acid Mine Drainage with Iron Scrap and Sulfate Reducing Bacteria Using Biomass Materials as Carbon Source
    Wang, Xianjun
    Di, Junzhen
    Dong, Yanrong
    Yang, Yu
    Liang, Bing
    Meng, Fankang
    Wang, Tingting
    An, Wenbo
    Li, Zengxin
    Guo, Jianzhi
    JOURNAL OF RENEWABLE MATERIALS, 2021, 9 (01) : 163 - 177
  • [30] Remediation of acid mine drainage by means of biological and chemical methods
    Luptakova, Alena
    Spaldon, Tomislav
    Balintova, Magdalena
    BIOHYDROMETALLURY: FROM THE SINGLE CELL TO THE ENVIRONMENT, 2007, 20-21 : 283 - +