Stress Corrosion Cracking Susceptibility of 316LN Grade Stainless Steel Weld Joint in Boiling Magnesium Chloride Hexahydrate Environment

被引:6
|
作者
Rajasekaran, R. [1 ]
Lakshminarayanan, A. K. [2 ]
Vasudevan, M. [3 ]
Raja, P. Vasantha [4 ]
机构
[1] Sri Sivasubramaniya Nadar Coll Engn, Dept Mech Engn, Chennai 603103, Tamil Nadu, India
[2] Sri Sivasubramaniya Nadar Coll Engn, Dept Mech Engn, Chennai 603110, Tamil Nadu, India
[3] Indira Gandhi Ctr Atom Res IGCAR, Mat Dev & Technol Div, Chennai 603102, Tamil Nadu, India
[4] Indira Gandhi Ctr Atom Res IGCAR, Adv Welding & Modelling Sect, Chennai 603102, Tamil Nadu, India
关键词
Stress corrosion cracking; 316LN austenitic stainless steel; Boiling MgCl(2 center dot)6H(2)O; Corrosion elongation curve; Transmission Electron Microscopy; Fractography; Dissolution of delta-ferrite; ALLOY; 600; PITTING CORROSION; FAILURE ANALYSIS; STRAIN-RATE; BEHAVIOR; 304-STAINLESS-STEEL; RESISTANCE; HYDROGEN; MICROSTRUCTURE;
D O I
10.1007/s12540-021-01162-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The 316LN Stainless Steel (SS) weld joints were fabricated using Tungsten Inert Gas (TIG) Welding and Activated Flux Tungsten Inert Gas (A-TIG) Welding techniques with suitable process parameters. Initially, basic mechanical properties were evaluated across weld joints. Further microstructural study of the base metal, TIG, and A-TIG joints were accomplished using Optical Microscopy (OM), Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) techniques. The microstructural characterization revealed higher grain size variations at the fusion zone of the A-TIG joint due to the slow cooling rate and reversed Marangoni convection effect. The Stress Corrosion Cracking (SCC) susceptibility of the TIG and A-TIG welded joints was assessed using five different loading/Stress conditions. The constant load boiling 45 wt% Magnesium Chloride Hexahydrate (MgCl(2 center dot)6H(2)O) solution as per ASTM G36-94 standard was used to evaluate the SCC susceptibility of the welded joints. The SCC (crack initiation and propagation) of the base metal and welded joints occurred by the anodic dissolution and Hydrogen Induced Cracking mechanisms. For the welded joints additionally, the dissolution of the delta-ferrite increased the crack growth rate. The A-TIG joint exhibited lesser SCC resistance than the TIG joint for the following major reasons: (i) Formation of the large dendrites (ii) Presence of the higher grain size variations at the fusion zone. Moreover, both welded joints showed lesser SCC resistance than the base metal due to the dissolution of the delta-ferrite and the residual stress formation. The fractographic studies for the base metal, TIG, and A-TIG joints revealed the brittle nature of transgranular SCC failure.
引用
收藏
页码:2778 / 2797
页数:20
相关论文
共 50 条
  • [21] Microstructures and Creep Properties of Type 316LN Stainless Steel Weld Joints
    Pavan, A. R.
    Sakthivel, T.
    Arivazhagan, B.
    Vasudevan, M.
    Krupa, B. R. Vaishnavi
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (12): : 4868 - 4890
  • [22] The effect of surface grinding on the stress corrosion cracking initiation of 316LN stainless steel in 600 ° C supercritical CO 2
    Qian, Hongchen
    Yang, Liujie
    Feng, Xingyu
    Wang, Wen
    Yang, Wanhuan
    Kuang, Wenjun
    CORROSION SCIENCE, 2024, 234
  • [23] Atmospheric chloride-induced stress corrosion cracking of laser engraved type 316L stainless steel
    Krawczyk, Benjamin
    Cook, Paul
    Hobbs, Jeff
    Engelberg, Dirk L.
    CORROSION SCIENCE, 2018, 142 : 93 - 101
  • [24] Influence of thermal aging on the SCC susceptibility of wrought 316LN stainless steel in a high temperature water environment
    Wang, Mingjia
    Chen, Lei
    Liu, Xiaocui
    Ma, Xiaocong
    CORROSION SCIENCE, 2014, 81 : 117 - 124
  • [25] Cracking initiation mechanism of 316LN stainless steel in the process of the hot deformation
    Zhang, Xiuzhi
    Zhang, Yishuai
    Li, Yingjie
    Liu, Jiansheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 559 : 301 - 306
  • [26] TEM investigation of intergranular stress corrosion cracking for 316 stainless steel in PWR environment
    Huang, YZ
    Titchmarsh, JM
    ACTA MATERIALIA, 2006, 54 (03) : 635 - 641
  • [27] Effect of metallurgical variables on the stress corrosion crack growth behaviour of AISI type 316LN stainless steel
    Shaikh, H.
    Anita, T.
    Dayal, R. K.
    Khatak, H. S.
    CORROSION SCIENCE, 2010, 52 (04) : 1146 - 1154
  • [28] Localized creep characterization of 316LN stainless steel weld joint using Small Punch Creep test
    Kumar, J. Ganesh
    Laha, K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 705 : 72 - 78
  • [29] Isothermal and thermomechanical fatigue behaviour of type 316LN austenitic stainless steel base metal and weld joint
    Kumar, T. Suresh
    Yadav, S. D.
    Nagesha, A.
    Kannan, R.
    Reddy, G. V. Prasad
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
  • [30] Pitting Corrosion Studies on Fusion Zone of Shielded Metal Arc Welded Type 316LN Stainless Steel Weldments
    Mannepalli, Srinivas
    Shankar, A. Ravi
    George, R. P.
    Ningshen, S.
    Philip, John
    Amarendra, G.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2019, 72 (12) : 3089 - 3105