Nanoscale characterization of bone-implant interface and biomechanical modulation of bone ingrowth

被引:16
作者
Clark, Paul A.
Clark, Andrew M.
Rodriguez, Anthony
Hussain, Mohammad A.
Mao, Jeremy J.
机构
[1] Univ Illinois, Dept Anat & Cell Biol, Tissue Engn Lab MC 841, Chicago, IL 60612 USA
[2] Univ Illinois, Dept Bioengn, Chicago, IL 60612 USA
[3] Univ Illinois, Dept Orthodont, Chicago, IL 60612 USA
来源
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS | 2007年 / 27卷 / 03期
基金
美国国家卫生研究院;
关键词
atomic force microscope; osteoblast; implants; bone; nanoindentation;
D O I
10.1016/j.msec.2006.05.056
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bone-implant interface is characterized by an array of cells and macromolecules. This study investigated the nanomechancial properties of bone-implant interface using atomic force microscopy in vitro, and the mechanical modulation of implant bone ingrowth in vivo using bone histomorphometry. Upon harvest of screw-type titanium implants placed in vivo in the rabbit maxilla and proximal femur for 4 weeks, nanoindentation was performed in the bone-implant interface at 60-mu m intervals radially from the implant surface. The average Young's Moduli (E) of the maxillary bone-implant interface was 1.13 +/- 0.27 MPa, lacking significant differences at all intervals. In contrast, an increasing gradient of E was observed radially from the femur bone-implant interface: 0.87 +/- 0.25 MPa to 2.24 +/- 0.69 MPa, representing significant differences among several 60-mu m intervals. In a separate experiment, bone healing was allowed for 6 weeks for proximal femur implants. The right femoral implant received axial cyclic loading at 200 mN and I Hz for 10 min/d over 12 days, whereas the left femoral implant served as control. Cyclic loading induced significantly higher bone volume, osteoblast numbers per endocortical bone surface, mineral apposition rate, and bone formation rate than controls. These data demonstrate nanoscale and microscale characterizations of bone-implant interface, and mechanical modulation of bone ingrowth surrounding titanium implants. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:382 / 393
页数:12
相关论文
共 87 条
[31]   Critical review of immediate implant loading [J].
Gapski, R ;
Wang, HL ;
Mascarenhas, P ;
Lang, NP .
CLINICAL ORAL IMPLANTS RESEARCH, 2003, 14 (05) :515-527
[32]   Mechanical properties of human dental enamel on the nanometre scale [J].
Habelitz, S ;
Marshall, SJ ;
Marshall, GW ;
Balooch, M .
ARCHIVES OF ORAL BIOLOGY, 2001, 46 (02) :173-183
[33]   The functional width of the dentino-enamel junction determined by AFM-Based nanoscratching [J].
Habelitz, S ;
Marshall, SJ ;
Marshall, GW ;
Balooch, M .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 135 (03) :294-301
[34]  
HATASHI K, 1985, J BIOMED MATER RES, V19, P133
[35]   Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope [J].
Heinz, WF ;
Hoh, JH .
TRENDS IN BIOTECHNOLOGY, 1999, 17 (04) :143-150
[36]   Ultrastructural aspects of the intact titanium implant-bone interface from undecalcified ultrathin sections [J].
Hemmerle, J ;
Voegel, JC .
BIOMATERIALS, 1996, 17 (19) :1913-1920
[37]   Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions [J].
Hengsberger, S ;
Kulik, A ;
Zysset, P .
BONE, 2002, 30 (01) :178-184
[38]  
Herrera Briones Francisco J, 2004, Med Oral, V9, P74
[39]   Regional structural and viscoelastic properties of fibrocartilage upon dynamic nanoindentation of the articular condyle [J].
Hu, K ;
Radhakrishnan, P ;
Patel, RV ;
Mao, JJ .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 136 (01) :46-52
[40]   Cell mechanics and mechanotransduction: pathways, probes, and physiology [J].
Huang, HD ;
Kamm, RD ;
Lee, RT .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2004, 287 (01) :C1-C11