Quadrature histograms in maximum-likelihood quantum state tomography

被引:5
作者
Silva, J. L. E. [1 ]
Glancy, S. [2 ]
Vasconcelos, H. M. [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Engn Teleinformat, BR-60440 Fortaleza, Ceara, Brazil
[2] NIST, Appl & Computat Math Div, Boulder, CO 80305 USA
关键词
DENSITY-MATRIX; TELEPORTATION; GENERATION;
D O I
10.1103/PhysRevA.98.022325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum state tomography aims to determine the quantum state of a system from measured data and is an essential tool for quantum information science. When dealing with continuous variable quantum states of light, tomography is often done by measuring the field amplitudes at different optical phases using homodyne detection. The quadrature-phase homodyne measurement outputs a continuous variable, so to reduce the computational cost of tomography, researchers often discretize the measurements. We show that this can be done without significantly degrading the fidelity between the estimated state and the true state. This paper studies different strategies for determining the histogram bin widths. We show that computation time can be significantly reduced with little loss in the fidelity of the estimated state when the measurement operators corresponding to each histogram bin are integrated over the bin width.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Ancilla-assisted quantum process tomography [J].
Altepeter, JB ;
Branning, D ;
Jeffrey, E ;
Wei, TC ;
Kwiat, PG ;
Thew, RT ;
O'Brien, JL ;
Nielsen, MA ;
White, AG .
PHYSICAL REVIEW LETTERS, 2003, 90 (19) :4
[2]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[3]   Direct measurement of the Wigner function by photon counting [J].
Banaszek, K ;
Radzewicz, C ;
Wódkiewicz, K ;
Krasinski, JS .
PHYSICAL REVIEW A, 1999, 60 (01) :674-677
[4]   Quantum encodings in spin systems and harmonic oscillators [J].
Bartlett, SD ;
de Guise, H ;
Sanders, BC .
PHYSICAL REVIEW A, 2002, 65 (05) :4
[5]   Dense coding for continuous variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW A, 2000, 61 (04) :4
[6]   Optimal cloning of coherent states with a linear amplifier and beam splitters [J].
Braunstein, SL ;
Cerf, NJ ;
Iblisdir, S ;
van Loock, P ;
Massar, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (21) :4938-4941
[7]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[8]   Optimal N-to-M cloning of conjugate quantum variables -: art. no. 040301 [J].
Cerf, NJ ;
Iblisdir, S .
PHYSICAL REVIEW A, 2000, 62 (04) :3
[9]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[10]   Quantum calibration of measurement instrumentation [J].
D'Ariano, GM ;
Maccone, L ;
Lo Presti, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (25)