Locally periodically poled LNOI ridge waveguide for second harmonic generation

被引:16
作者
Mu, Biao [1 ,2 ]
Wu, Xianfang [1 ,2 ]
Niu, Yunfei [1 ,2 ]
Chen, Yan [1 ,2 ]
Cai, Xinlun [3 ,4 ]
Gong, Yanxiao [1 ,2 ]
Xie, Zhenda [1 ,2 ]
Hu, Xiaopeng [1 ,2 ]
Zhu, Shining [1 ,2 ]
机构
[1] Nanjing Univ, Coll Elect Sci & Engn, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[3] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
[4] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
lithium niobate on insulator; ridge waveguide; ferroelectric domain inversion; second harmonic generation; SUM-FREQUENCY GENERATION; LITHIUM-NIOBATE; THIN-FILM; CONVERSION; EFFICIENCY;
D O I
10.3788/COL202119.060007
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Periodically poled lithium niobate on insulator (LNOI) ridge waveguides are desirable for high-efficiency nonlinear frequency conversions, and the fabrication process of such waveguides is crucial for device performance. In this work, we report fabrication and characterization of locally periodically poled ridge waveguides. Ridge waveguides were fabricated by dry etching, and then the high-voltage pulses were applied to locally poled ridge waveguides. Second harmonic generation with normalized conversion efficiency of 435.5% W-1.cm(-2) was obtained in the periodically poled LNOI ridge waveguide, which was consistent with the triangular domain structure revealed by confocal microscopy.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Optical waveguides in lithium niobate: Recent developments and applications [J].
Bazzan, Marco ;
Sada, Cinzia .
APPLIED PHYSICS REVIEWS, 2015, 2 (04)
[2]   Improved second harmonic performance in periodically poled LNOI waveguides through engineering of lateral leakage [J].
Boes, Andreas ;
Chang, Lin ;
Knoerzer, Markus ;
Nguyen, Thach G. ;
Peters, Jon D. ;
Bowers, John E. ;
Mitchell, Arnan .
OPTICS EXPRESS, 2019, 27 (17) :23919-23928
[3]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[4]   Thin film wavelength converters for photonic integrated circuits [J].
Chang, Lin ;
Li, Yifei ;
Volet, Nicolas ;
Wang, Leiran ;
Peters, Jon ;
Bowers, John E. .
OPTICA, 2016, 3 (05) :531-535
[5]   Efficient parametric frequency conversion in lithium niobate nanophotonic chips [J].
Chen, Jia-Yang ;
Sua, Yong Meng ;
Ma, Zhao-Hui ;
Tang, Chao ;
Li, Zhan ;
Huang, Yu-Ping .
OSA CONTINUUM, 2019, 2 (10) :2914-2924
[6]   High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond [J].
He, Mingbo ;
Xu, Mengyue ;
Ren, Yuxuan ;
Jian, Jian ;
Ruan, Ziliang ;
Xu, Yongsheng ;
Gao, Shengqian ;
Sun, Shihao ;
Wen, Xueqin ;
Zhou, Lidan ;
Liu, Lin ;
Guo, Changjian ;
Chen, Hui ;
Yu, Siyuan ;
Liu, Liu ;
Cai, Xinlun .
NATURE PHOTONICS, 2019, 13 (05) :359-+
[7]   Ion-cut lithium niobate on insulator technology: Recent advances and perspectives [J].
Jia, Yuechen ;
Wang, Lei ;
Chen, Feng .
APPLIED PHYSICS REVIEWS, 2021, 8 (01)
[8]   Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band [J].
Li, Guangzhen ;
Chen, Yuping ;
Jiang, Haowei ;
Chen, Xianfeng .
OPTICS LETTERS, 2017, 42 (05) :939-942
[9]   Advances in on-chip photonic devices based on lithium niobate on insulator [J].
Lin, Jintian ;
Bo, Fang ;
Cheng, Ya ;
Xu, Jingjun .
PHOTONICS RESEARCH, 2020, 8 (12) :1910-1936
[10]  
Min Wang, 2019, Quantum Engineering, V1, DOI 10.1002/que2.9