A prediction strategy based on decision variable analysis for dynamic Multi-objective Optimization

被引:46
|
作者
Zheng, Jinhua [1 ,2 ]
Zhou, Yubing [1 ]
Zou, Juan [1 ]
Yang, Shengxiang [3 ]
Ou, Junwei [1 ]
Hu, Yaru [1 ]
机构
[1] Xiangtan Univ, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Hunan, Peoples R China
[2] Hengyang Normal Univ, Hunan Prov Key Lab Intelligent Informat Proc & Ap, Hengyang 421002, Peoples R China
[3] De Montfort Univ, Sch Comp Sci & Informat, Leicester LE1 9BH, Leics, England
基金
中国国家自然科学基金;
关键词
Dynamic multi-objective optimization; Evolutionary algorithms; Decision Variable Analysis; Adaptive Selection; Diversity; EVOLUTIONARY ALGORITHM; ENVIRONMENTS; MEMORY;
D O I
10.1016/j.swevo.2020.100786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many multi-objective optimization problems in reality are dynamic, requiring the optimization algorithm to quickly track the moving optima after the environment changes. Therefore, response strategies are often used in dynamic multi-objective algorithms to find Pareto optimal. In this paper, we propose a hybrid prediction strategy based on the classification of decision variables, which consists of three steps. After detecting the environment change, the first step is to analyze the influence of each decision variable on individual convergence and distribution in the new environment. The second step is to adopt different prediction methods for different decision variables. Finally, adaptive selection is applied to the solution set generated in the first and second steps, and solutions with good convergence and diversity are selected to make the initial population more adaptable to the new environment. The prediction strategy can help the solution set converge while maintaining its diversity. The experimental results and performance show that the proposed algorithm is capable of significantly improving the dynamic optimization performance compared with five state-of-the-art evolutionary algorithms.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] An ensemble learning based prediction strategy for dynamic multi-objective optimization
    Wang, Feng
    Li, Yixuan
    Liao, Fanshu
    Yan, Hongyang
    APPLIED SOFT COMPUTING, 2020, 96
  • [12] An acceleration-based prediction strategy for dynamic multi-objective optimization
    Junxi Zhang
    Shiru Qu
    Zhiteng Zhang
    Shaokang Cheng
    Mingxing Li
    Yang Bi
    Soft Computing, 2024, 28 (2) : 1215 - 1228
  • [13] An acceleration-based prediction strategy for dynamic multi-objective optimization
    Zhang, Junxi
    Qu, Shiru
    Zhang, Zhiteng
    Cheng, Shaokang
    Li, Mingxing
    Bi, Yang
    SOFT COMPUTING, 2024, 28 (02) : 1215 - 1228
  • [14] A two stages prediction strategy for evolutionary dynamic multi-objective optimization
    Sun, Hao
    Ma, Xuemin
    Hu, Ziyu
    Yang, Jingming
    Cui, Huihui
    APPLIED INTELLIGENCE, 2023, 53 (01) : 1115 - 1131
  • [15] A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
    Wang, Peidi
    Ma, Yongjie
    Wang, Minghao
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 75
  • [16] A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization
    Chen, Debao
    Zou, Feng
    Lu, Renquan
    Wang, Xude
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 43 : 147 - 165
  • [17] Dynamic multi-objective optimization algorithm based on ecological strategy
    Zhang, Shiwen
    Li, Zhiyong
    Chen, Shaomiao
    Li, Renfa
    Li, Z. (zhiyong.li@hnu.edu.cn), 1600, Science Press (51): : 1313 - 1330
  • [18] A Discriminative Prediction Strategy Based on Multi-View Knowledge Transfer for Dynamic Multi-Objective Optimization
    Xu, Hua
    Zhang, Chenjie
    Huang, Lingxiang
    Tao, Juntai
    Zheng, Jianlu
    PROCESSES, 2025, 13 (03)
  • [19] Dynamic multi-objective optimization algorithm based on individual prediction
    Wang W.-L.
    Chen Z.-K.
    Wu F.
    Wang Z.
    Yu M.-J.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11): : 2133 - 2146
  • [20] Classification-based multi-strategy prediction method for dynamic multi-objective optimization problems
    Li E.-C.
    Zhou Y.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (07): : 1569 - 1580