Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography

被引:20
|
作者
Pedrazzini, Stella [1 ]
London, Andrew J. [1 ]
Gault, Baptiste [1 ,2 ]
Saxey, David [3 ]
Speller, Susannah [1 ]
Grovenor, Chris R. M. [1 ]
Danaie, Mohsen [1 ]
Moody, Michael P. [1 ]
Edmondson, Philip D. [4 ]
Bagot, Paul A. J. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[3] Curtin Univ, John de Laeter Ctr, Geosci Atom Probe, Adv Resource Characterisat Facil, Perth, WA 6102, Australia
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
基金
英国工程与自然科学研究理事会;
关键词
Atom probe tomography; YBCO; superconductor; stoichiometry; OXYGEN STOICHIOMETRY; OPTIMIZATION; PROGRESS; DEFECTS; FILMS;
D O I
10.1017/S1431927616012757
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The functional properties of the high-temperature superconductor Y1Ba2Cu3O7- (delta)(Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (delta>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y7.7Ba15.3Cu23O54-delta) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of the experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y7.9Ba10.4Cu24.4O57.2.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 50 条
  • [41] METALLIC HYDROGEN - A HIGH-TEMPERATURE SUPERCONDUCTOR
    ASHCROFT, NW
    PHYSICAL REVIEW LETTERS, 1968, 21 (26) : 1748 - &
  • [42] PRACTICAL HIGH-TEMPERATURE SUPERCONDUCTOR FILTERS
    MADDEN, JM
    MICROWAVE JOURNAL, 1994, 37 (10) : 100 - &
  • [43] LYSOZYME AS A POSSIBLE HIGH-TEMPERATURE SUPERCONDUCTOR
    SORENSEN, CM
    FICKETT, FR
    MOCKLER, RC
    OSULLIVAN, WJ
    SCOTT, JF
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1976, 9 (10): : L251 - L254
  • [44] PHYSICS The thinnest high-temperature superconductor
    Xie, Xin-cheng
    NATIONAL SCIENCE REVIEW, 2014, 1 (03) : 324 - 325
  • [45] Observation of vortices in the high-temperature superconductor
    Kanno, S
    Kawai, T
    Satou, S
    Aizawa, K
    Kusunoki, M
    Mukaida, M
    Ohsima, S
    Hayashi, S
    Nishizaki, T
    Kobayashi, N
    PHYSICA C, 2001, 357 : 625 - 628
  • [46] An equation of state for high-temperature superconductor
    Pandey R.K.
    Gupta B.R.K.
    Journal of Superconductivity, 1997, 10 (6): : 669 - 672
  • [47] DIAGNOSING HIGH-TEMPERATURE SUPERCONDUCTOR MATERIALS
    KARPOV, YA
    GRAZHULENE, SS
    INDUSTRIAL LABORATORY, 1990, 56 (08): : 891 - 892
  • [48] NERNST EFFECT IN A HIGH-TEMPERATURE SUPERCONDUCTOR
    LENGFELLNER, H
    SCHNELLBOGL, A
    BETZ, J
    PRETTL, W
    RENK, KF
    PHYSICA B, 1990, 165 : 1219 - 1220
  • [49] Hunting for the Next High-Temperature Superconductor
    Lemonick, Sam
    ACS CENTRAL SCIENCE, 2018, 4 (11) : 1447 - 1449
  • [50] Spins in the vortices of a high-temperature superconductor
    Lake, B
    Aeppli, G
    Clausen, KN
    McMorrow, DF
    Lefmann, K
    Hussey, NE
    Mangkorntong, N
    Nohara, M
    Takagi, H
    Mason, TE
    Schröder, A
    SCIENCE, 2001, 291 (5509) : 1759 - 1762