Nanoscale Stoichiometric Analysis of a High-Temperature Superconductor by Atom Probe Tomography

被引:20
|
作者
Pedrazzini, Stella [1 ]
London, Andrew J. [1 ]
Gault, Baptiste [1 ,2 ]
Saxey, David [3 ]
Speller, Susannah [1 ]
Grovenor, Chris R. M. [1 ]
Danaie, Mohsen [1 ]
Moody, Michael P. [1 ]
Edmondson, Philip D. [4 ]
Bagot, Paul A. J. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[3] Curtin Univ, John de Laeter Ctr, Geosci Atom Probe, Adv Resource Characterisat Facil, Perth, WA 6102, Australia
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
基金
英国工程与自然科学研究理事会;
关键词
Atom probe tomography; YBCO; superconductor; stoichiometry; OXYGEN STOICHIOMETRY; OPTIMIZATION; PROGRESS; DEFECTS; FILMS;
D O I
10.1017/S1431927616012757
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The functional properties of the high-temperature superconductor Y1Ba2Cu3O7- (delta)(Y-123) are closely correlated to the exact stoichiometry and oxygen content. Exceeding the critical value of 1 oxygen vacancy for every five unit cells (delta>0.2, which translates to a 1.5 at% deviation from the nominal oxygen stoichiometry of Y7.7Ba15.3Cu23O54-delta) is sufficient to alter the superconducting properties. Stoichiometry at the nanometer scale, particularly of oxygen and other lighter elements, is extremely difficult to quantify in complex functional ceramics by most currently available analytical techniques. The present study is an analysis and optimization of the experimental conditions required to quantify the local nanoscale stoichiometry of single crystal yttrium barium copper oxide (YBCO) samples in three dimensions by atom probe tomography (APT). APT analysis required systematic exploration of a wide range of data acquisition and processing conditions to calibrate the measurements. Laser pulse energy, ion identification, and the choice of range widths were all found to influence composition measurements. The final composition obtained from melt-grown crystals with optimized superconducting properties was Y7.9Ba10.4Cu24.4O57.2.
引用
收藏
页码:414 / 424
页数:11
相关论文
共 50 条
  • [21] HIGH-TEMPERATURE SUPERCONDUCTOR LENS
    EVANS, R
    NATURE, 1989, 340 (6230) : 191 - 191
  • [22] Going small: Nanoscale geochronology using atom probe tomography
    Parman, Stephen W.
    AMERICAN MINERALOGIST, 2015, 100 (07) : 1333 - 1334
  • [23] Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography
    Schmidt, Joel E.
    Peng, Linqing
    Poplawsky, Jonathan D.
    Weckhuysen, Bert M.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (33) : 10422 - 10435
  • [24] High-temperature superconductor wire
    Malozemoff, Alex
    ADVANCED MATERIALS & PROCESSES, 2007, 165 (09): : 35 - 37
  • [25] HIGH-TEMPERATURE SUPERCONDUCTOR HINTS
    ROBINSON, AL
    SCIENCE, 1987, 236 (4807) : 1431 - 1431
  • [26] High-temperature superconductor firsts
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 1999, 78 (02): : 21 - 21
  • [27] HIGH-TEMPERATURE OXIDE SUPERCONDUCTOR
    HASEGAWA, T
    KISHIO, K
    KITAZAWA, K
    FUEKI, K
    DENKI KAGAKU, 1987, 55 (10): : 737 - 739
  • [28] HIGH-TEMPERATURE SUPERCONDUCTOR JOINTS
    HILAL, MA
    HUANG, X
    LLOYD, JD
    IEEE TRANSACTIONS ON MAGNETICS, 1991, 27 (02) : 927 - 930
  • [29] The thinnest high-temperature superconductor
    Xin-cheng Xie
    NationalScienceReview, 2014, 1 (03) : 324 - 325
  • [30] HYSTERESIS IN A HIGH-TEMPERATURE SUPERCONDUCTOR
    EDMOND, I
    FIRTH, LD
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (14) : 3813 - 3818