A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application

被引:193
作者
Zhou, Kun [1 ]
He, Yuan [1 ]
Xu, Qingchi [2 ]
Zhang, Qin'e [1 ]
Zhou, An'an [1 ]
Lu, Zihao [1 ]
Yang, Li-Kun [1 ,2 ]
Jiang, Yuan [1 ,2 ]
Ge, Dongtao [1 ]
Liu, Xiang Yang [2 ,4 ]
Bai, Hua [1 ,3 ]
机构
[1] Xiamen Univ, Coll Mat, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Soft Funct Mat Res, Res Inst Biomimet & Soft Matter, Dept Phys, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Graphene Ind & Engn Res Inst, Xiamen 361005, Peoples R China
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
基金
中国国家自然科学基金;
关键词
vanadium pentoxide; supercapacitor; polyaniline; hydrogel; conducting polymer; ELECTRODE MATERIAL; HIGH-PERFORMANCE; VANADIUM-OXIDE; GROWTH; POLYMERIZATION; NANOCOMPOSITE; CAPACITANCE; POLYMERS; SENSOR; FILM;
D O I
10.1021/acsnano.8b02055
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANT nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g(-1), a rate capability, and good cycling stability (similar to 83% capacitance retention after 10,000 cycles). This method was also extended to polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.
引用
收藏
页码:5888 / 5894
页数:7
相关论文
共 39 条
[1]   Graphene oxide/conducting polymer composite hydrogels [J].
Bai, Hua ;
Sheng, Kaixuan ;
Zhang, Pengfei ;
Li, Chun ;
Shi, Gaoquan .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (46) :18653-18658
[2]   Vanadium oxide-PANI nanocomposite-based macroscopic fibers: 1D alcohol sensors bearing enhanced toughness [J].
Dexmer, J. ;
Leroy, C. M. ;
Binet, L. ;
Heresanu, V. ;
Launois, P. ;
Steunou, N. ;
Coulon, C. ;
Maquet, J. ;
Brun, N. ;
Livage, J. ;
Backov, R. .
CHEMISTRY OF MATERIALS, 2008, 20 (17) :5541-5549
[3]   Polyaniline supercapacitors [J].
Eftekhari, Ali ;
Li, Lei ;
Yang, Yang .
JOURNAL OF POWER SOURCES, 2017, 347 :86-107
[4]   A conducting polymer nanojunction sensor for glucose detection [J].
Forzani, ES ;
Zhang, HQ ;
Nagahara, LA ;
Amlani, I ;
Tsui, R ;
Tao, NJ .
NANO LETTERS, 2004, 4 (09) :1785-1788
[5]   VIBRATIONAL-SPECTRA AND STRUCTURE OF POLYANILINE [J].
FURUKAWA, Y ;
UEDA, F ;
HYODO, Y ;
HARADA, I ;
NAKAJIMA, T ;
KAWAGOE, T .
MACROMOLECULES, 1988, 21 (05) :1297-1305
[6]   High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2 [J].
Gao, Hongcai ;
Xiao, Fei ;
Ching, Chi Bun ;
Duan, Hongwei .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2801-2810
[7]  
Ghosh S, 1999, ADV MATER, V11, P1214, DOI 10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO
[8]  
2-3
[9]   Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors [J].
Guan, Hui ;
Fan, Li-Zhen ;
Zhang, Hongchang ;
Qu, Xuanhui .
ELECTROCHIMICA ACTA, 2010, 56 (02) :964-968
[10]   Electroconductive hydrogels: Synthesis, characterization and biomedical applications [J].
Guiseppi-Elie, Anthony .
BIOMATERIALS, 2010, 31 (10) :2701-2716