Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells

被引:75
|
作者
Zhou, Chao [1 ,2 ]
Tsai, Tsung-Han [1 ,2 ]
Adler, Desmond C. [1 ,2 ,3 ]
Lee, Hsiang-Chieh [1 ,2 ]
Cohen, David W. [4 ]
Mondelblatt, Amy [4 ]
Wang, Yihong [4 ]
Connolly, James L. [4 ]
Fujimoto, James G. [1 ,2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] LightLab Imaging Inc, Westford, MA 01886 USA
[4] Harvard Univ, Dept Pathol, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA
基金
加拿大自然科学与工程研究理事会;
关键词
GROWTH-FACTOR RECEPTOR; CONTRAST AGENTS; NANOPARTICLES; THERAPY; CANCER; CELLS;
D O I
10.1364/OL.35.000700
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate photothermal optical coherence tomography (OCT) imaging in highly scattering human breast tissue ex vivo. A 120 kHz axial scan rate, swept-source phase-sensitive OCT system at 1300 nm was used to detect phase changes induced by 830 nm photothermal excitation of gold nanoshells. Localized phase modulation was observed 300-600 mu m deep in scattering tissue using an excitation power of only 22 mW at modulation frequencies up to 20 kHz. This technique enables integrated structural and molecular-targeted imaging for cancer markers using nanoshells. (C) 2010 Optical Society of America
引用
收藏
页码:700 / 702
页数:3
相关论文
共 50 条
  • [21] Photothermal properties of gold nanostars therapeutic agent and its application in photothermal therapy and optical coherence tomography
    Zhe, Wu
    Dong-xiao, Lu
    Jin-hua, Li
    CHINESE OPTICS, 2022, 15 (02) : 233 - 241
  • [22] Depth profiling of photothermal compound concentrations using phase sensitive optical coherence tomography
    Guan, Guangying
    Reif, Roberto
    Huang, Zhihong
    Wang, Ruikang K.
    JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (12)
  • [23] Imaging of human breast tissue using polarization sensitive optical coherence tomography
    Verma, Y.
    Gautam, M.
    Rao, K. Divakar
    Swami, M. K.
    Gupta, P. K.
    LASER PHYSICS, 2011, 21 (12) : 2143 - 2148
  • [24] Advantages of using gold hollow nanoshells in cancer photothermal therapy
    Abbasi, Sattar
    Servatkhah, Mojtaba
    Keshtkar, Mohammad Mehdi
    CHINESE PHYSICS B, 2016, 25 (08)
  • [25] Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager
    Erickson, Sarah J.
    Martinez, Sergio L.
    DeCerce, Joseph
    Romero, Adrian
    Caldera, Lizeth
    Godavarty, Anuradha
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (05): : 1563 - 1579
  • [26] In vivo optical coherence tomography attenuation imaging of the breast surgical cavity using a handheld probe
    Gong, Peijun
    Foo, Ken Y.
    Lakhiani, Devina D.
    Zilkens, Renate
    Ismail, Hina M.
    Yeomans, Chris
    Dessauvagie, Benjamin F.
    Latham, Bruce
    Saunders, Christobel M.
    Kennedy, Brendan F.
    OPTICS AND LASER TECHNOLOGY, 2023, 166
  • [27] Quantification of Glucose Diffusion in Human Lung Tissues by Using Fourier Domain Optical Coherence Tomography
    Guo, Xiao
    Wu, Guoyong
    Wei, Huajiang
    Deng, Xiaoyuan
    Yang, Hongqin
    Ji, Yanhong
    He, Yonghong
    Guo, Zhouyi
    Xie, Shusen
    Zhong, Huiqing
    Zhao, Qingliang
    Zhu, Zhenguo
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2012, 88 (02) : 311 - 316
  • [28] Detection of pH-induced aggregation of "smart" gold nanoparticles with photothermal optical coherence tomography
    Xiao, Peng
    Li, Qingyun
    Joo, Yongjoon
    Nam, Jutaek
    Hwang, Sekyu
    Song, Jaejung
    Kim, Sungjee
    Joo, Chulmin
    Kim, Ki Hean
    OPTICS LETTERS, 2013, 38 (21) : 4429 - 4432
  • [29] Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography
    Lapierre-Landry, Maryse
    Huckenpahler, Alison L.
    Link, Brian A.
    Collery, Ross F.
    Carroll, Joseph
    Skala, Melissa C.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2018, 7 (05):
  • [30] Transient-mode photothermal optical coherence tomography
    Salimi, Mohammad Hossein
    Villiger, Martin
    Tabatabaei, Nima
    OPTICS LETTERS, 2021, 46 (22) : 5703 - 5706