Using group theory for knowledge representation and discovery

被引:0
作者
Kern-Isberner, Gabriele [1 ]
机构
[1] Univ Dortmund, Dept Comp Sci, D-44221 Dortmund, Germany
来源
COMBINATORIAL GROUP THEORY, DISCRETE GROUPS, AND NUMBER THEORY | 2006年 / 421卷
关键词
combinatorial group theory; knowledge discovery; knowledge representation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present an approach to extract most relevant information from data given in form of a probability distribution. Relevance here is meant with respect to some appropriate inductive inference process, like maximum entropy inference (ME-inference) in probabilistics. So in particular, the method developed in this paper is apt to solve the inverse maxent problem, computing from a distribution in a non-heuristic way a set of conditionals that ME-represents that distribution. Since we only make use of one special characteristic of ME-inference, this method may as well be applied to other, similar inference processes.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 12 条
[1]  
[Anonymous], 1974, TECHNOMETRICS
[2]  
Beierle C, 2003, LECT NOTES COMPUT SC, V2589, P186
[3]  
de Finetti Bruno, 1974, THEORY PROBABILITY C, V1-2, DOI 10.1002/9781119286387
[4]   Qualitative probabilities for default reasoning, belief revision, and causal modeling [J].
Goldszmidt, M ;
Pearl, J .
ARTIFICIAL INTELLIGENCE, 1996, 84 (1-2) :57-112
[5]  
Kern-Isberner G, 2000, FR ART INT, V54, P581
[6]   Characterizing the principle of minimum cross-entropy within a conditional-logical framework [J].
Kern-Isberner, G .
ARTIFICIAL INTELLIGENCE, 1998, 98 (1-2) :169-208
[7]  
Kern-Isberner G, 2001, LNAI, V2087
[8]  
KERNISBERNER G, 2004, P 9 INT C PRINC KNOW
[9]  
KERNISBERNER G, 2000, P 8 INT WORKSH NONM
[10]  
KERNISBERNER G, 1999, THESIS FERN U HAGEN