A High Sensitivity Self-Powered Wind Speed Sensor Based on Triboelectric Nanogenerators (TENGs)

被引:24
|
作者
Liu, Yangming [1 ]
Liu, Jialin [1 ]
Che, Lufeng [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
关键词
self-powered sensor; triboelectric nanogenerator; wind speed detection; high sensitivity; ACCELERATION SENSOR; ENERGY; MOTION;
D O I
10.3390/s21092951
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Triboelectric nanogenerators (TENGs) have excellent properties in harvesting tiny environmental energy and self-powered sensor systems with extensive application prospects. Here, we report a high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (TENGs). The sensor consists of the upper and lower two identical TENGs. The output electrical signal of each TENG can be used to detect wind speed so that we can make sure that the measurement is correct by two TENGs. We study the influence of different geometrical parameters on its sensitivity and then select a set of parameters with a relatively good output electrical signal. The sensitivity of the wind speed sensor with this set of parameters is 1.79 mu A/(m/s) under a wind speed range from 15 m/s to 25 m/s. The sensor can light 50 LEDs at the wind speed of 15 m/s. This work not only advances the development of self-powered wind sensor systems but also promotes the application of wind speed sensing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Triboelectric nanogenerators as self-powered sensors for biometric authentication
    Shi, Xue
    Han, Kai
    Pang, Yaokun
    Mai, Wenjie
    Luo, Jianjun
    NANOSCALE, 2023, 15 (22) : 9635 - 9651
  • [32] A Self-Powered Rotating Speed Sensor for Downhole Motor Based on Triboelectric Nanogenerator
    Wang, Yu
    Wu, Chuan
    Yang, Shuo
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 4310 - 4316
  • [33] Structural Triboelectric Nanogenerators for Self-powered Wearable Devices
    Karbari, Sudha R.
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 187 - 197
  • [34] Review and Prospect of Triboelectric Nanogenerators in Self-powered Microsystems
    Zhang C.
    Fu X.
    Wang Z.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 89 - 101
  • [35] Triboelectric nanogenerators for self-powered sensors and other applications
    Lee, Chengkuo
    Qin, Yong
    Wang, Yi-Cheng
    MRS BULLETIN, 2025, 50 (04) : 428 - 438
  • [36] Recent Advances in Self-Powered Electronic Skin Based on Triboelectric Nanogenerators
    Feng, Qingyang
    Wen, Yuzhang
    Sun, Fengxin
    Xie, Zhenning
    Zhang, Mengqi
    Wang, Yunlu
    Liu, Dongsheng
    Cheng, Zihang
    Mao, Yupeng
    Zhao, Chongle
    ENERGIES, 2024, 17 (03)
  • [37] Textile-Based Triboelectric Nanogenerators for Self-Powered Wearable Electronics
    Kwak, Sung Soo
    Yoon, Hong-Joon
    Kim, Sang-Woo
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
  • [38] Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting
    Ren, Xiaohu
    Fan, Huiqing
    Wang, Chao
    Ma, Jiangwei
    Li, Hua
    Zhang, Mingchang
    Lei, Shenhui
    Wang, Weijia
    NANO ENERGY, 2018, 50 : 562 - 570
  • [39] Recent Progress in Self-Powered Sensors Based on Liquid-Solid Triboelectric Nanogenerators
    Nguyen, Quang Tan
    Vu, Duy Linh
    Le, Chau Duy
    Ahn, Kyoung Kwan
    SENSORS, 2023, 23 (13)
  • [40] A self-powered vibration sensor based on the coupling of triboelectric nanogenerator and electromagnetic generator
    Fang, Lin
    Zheng, Qiwei
    Hou, Wenchi
    Zheng, Li
    Li, Hexing
    NANO ENERGY, 2022, 97