Large-Scale Screening and Machine Learning for Metal-Organic Framework Membranes to Capture CO2 from Flue Gas

被引:19
作者
Situ, Yizhen [1 ]
Yuan, Xueying [1 ]
Bai, Xiangning [1 ]
Li, Shuhua [1 ]
Liang, Hong [1 ]
Zhu, Xin [1 ]
Wang, Bangfen [1 ]
Qiao, Zhiwei [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Joint Inst Guangzhou Univ & Inst Corros Sci & Tec, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
membrane separation; metal-organic frameworks; machine learning; MOF MEMBRANES; SEPARATION; ADSORPTION; DESIGN; PERFORMANCE; EQUILIBRIA; ASSIGNMENT; STORAGE;
D O I
10.3390/membranes12070700
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To combat global warming, as an energy-saving technology, membrane separation can be applied to capture CO2 from flue gas. Metal-organic frameworks (MOFs) with characteristics like high porosity have great potential as membrane materials for gas mixture separation. In this work, through a combination of grand canonical Monte Carlo and molecular dynamics simulations, the permeability of three gases (CO2, N-2, and O-2) was calculated and estimated in 6013 computation-ready experimental MOF membranes (CoRE-MOFMs). Then, the relationship between structural descriptors and permeance performance, and the importance of available permeance area to permeance performance of gas molecules with smaller kinetic diameters were found by univariate analysis. Furthermore, comparing the prediction accuracy of seven classification machine learning algorithms, XGBoost was selected to analyze the order of importance of six structural descriptors to permeance performance, through which the conclusion of the univariate analysis was demonstrated one more time. Finally, seven promising CoRE-MOFMs were selected, and their structural characteristics were analyzed. This work provides explicit directions and powerful guidelines to experimenters to accelerate the research on membrane separation for the purification of flue gas.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Role of partial charge assignment methods in high-throughput screening of MOF adsorbents and membranes for CO2/CH4 separation [J].
Altintas, Cigdem ;
Keskin, Seda .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2020, 5 (02) :532-543
[2]   Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures [J].
Altintas, Cigdem ;
Keskin, Seda .
RSC ADVANCES, 2017, 7 (82) :52283-52295
[3]   Large-Scale Computational Screening of Metal Organic Framework (MOF) Membranes and MOF-Based Polymer Membranes for H2/N2 Separations [J].
Azar, Ayda Nemati Vesali ;
Velioglu, Sadiye ;
Keskin, Seda .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (10) :9525-9536
[4]   Machine-Learning-Assisted High-Throughput computational screening of Metal-Organic framework membranes for hydrogen separation [J].
Bai, Xiangning ;
Shi, Zenan ;
Xia, Huan ;
Li, Shuhua ;
Liu, Zili ;
Liang, Hong ;
Liu, Zhiting ;
Wang, Bangfen ;
Qiao, Zhiwei .
CHEMICAL ENGINEERING JOURNAL, 2022, 446
[5]   Data-driven design of metal-organic frameworks for wet flue gas CO2 capture [J].
Boyd, Peter G. ;
Chidambaram, Arunraj ;
Garcia-Diez, Enrique ;
Ireland, Christopher P. ;
Daff, Thomas D. ;
Bounds, Richard ;
Gladysiak, Andrzej ;
Schouwink, Pascal ;
Moosavi, Seyed Mohamad ;
Maroto-Valer, M. Mercedes ;
Reimer, Jeffrey A. ;
Navarro, Jorge A. R. ;
Woo, Tom K. ;
Garcia, Susana ;
Stylianou, Kyriakos C. ;
Smit, Berend .
NATURE, 2019, 576 (7786) :253-+
[6]   Improved H2/CO2 separation performance on mixed-linker ZIF-7 polycrystalline membranes [J].
Chang, Hao ;
Wang, Yan ;
Xiang, Long ;
Liu, Donghui ;
Wang, Chongqing ;
Pan, Yichang .
CHEMICAL ENGINEERING SCIENCE, 2018, 192 :85-93
[7]   Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation [J].
Chen, Season S. ;
Yang, Zhen-Jie ;
Chang, Chia-Hao ;
Koh, Hoong-Uei ;
Al-Saeedi, Sameerah, I ;
Tung, Kuo-Lun ;
Wu, Kevin C-W .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 :313-324
[8]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998
[9]   Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals [J].
Chung, Yongchul G. ;
Camp, Jeffrey ;
Haranczyk, Maciej ;
Sikora, Benjamin J. ;
Bury, Wojciech ;
Krungleviciute, Vaiva ;
Yildirim, Taner ;
Farha, Omar K. ;
Sholl, David S. ;
Snurr, Randall Q. .
CHEMISTRY OF MATERIALS, 2014, 26 (21) :6185-6192
[10]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+