Ultrafast laser-collision- induced fluorescence in atmospheric pressure plasma

被引:7
作者
Barnat, E. V. [1 ]
Fierro, A. [1 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
关键词
atmospheric pressure plasma; diagnostics; laser-collision-induced fluorescence; ultrafast laser; laser-induced fluorescence; helium; SUBNANOSECOND SPECTRAL DIAGNOSTICS; STREAMER DISCHARGES; IONIZATION; COMBUSTION; HELIUM; AIR;
D O I
10.1088/1361-6463/aa5f1e
中图分类号
O59 [应用物理学];
学科分类号
摘要
The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (similar to 10 ns), ultrashort pulse laser excitation (<100 fs) of the 2(3)S to 3(3)P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is similar to 10(12) e cm(-3). The spatial profiles of the 2(3)S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.
引用
收藏
页数:7
相关论文
共 42 条
[1]   2D laser-collision induced fluorescence in low-pressure argon discharges [J].
Barnat, E. V. ;
Weatherford, B. R. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (05)
[2]   Multi-dimensional optical and laser-based diagnostics of low-temperature ionized plasma discharges [J].
Barnat, E. V. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (05) :1-23
[3]   Two-dimensional mapping of electron densities and temperatures using laser-collisional induced fluorescence [J].
Barnat, E. V. ;
Frederickson, K. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2010, 19 (05)
[4]   On the Interaction of Cold Atmospheric Pressure Plasma with Surfaces of Bio-molecules and Model Polymers [J].
Bartis, E. A. J. ;
Knoll, A. J. ;
Luan, P. ;
Seog, J. ;
Oehrlein, G. S. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (01) :121-149
[5]   Ignition and afterglow dynamics of a high pressure nanosecond pulsed helium micro-discharge: II. Rydberg molecules kinetics [J].
Carbone, Emile A. D. ;
Schregel, Christian-Georg ;
Czarnetzki, Uwe .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[6]   Low temperature atmospheric pressure plasma sources for microbial decontamination [J].
Ehlbeck, J. ;
Schnabel, U. ;
Polak, M. ;
Winter, J. ;
von Woedtke, Th ;
Brandenburg, R. ;
von dem Hagen, T. ;
Weltmann, K-D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (01)
[7]  
Gessel A. F. H., 2012, PLASMA SOURCES SCI T, V21, DOI DOI 10.1088/0963-0252/21/1/015003
[8]   Low temperature plasma biomedicine: A tutorial review [J].
Graves, David B. .
PHYSICS OF PLASMAS, 2014, 21 (08)
[9]   Sub-nanosecond delays of light emitted by streamer in atmospheric pressure air: Analysis of N2(C3Πu)and N2+(B2Σu+) emissions and fundamental streamer structure [J].
Hoder, T. ;
Bonaventura, Z. ;
Bourdon, A. ;
Simek, M. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (07)
[10]   The electron spatial distribution and leak width in a magnetic cusp [J].
Hubble, A. A. ;
Barnat, E. V. ;
Weatherford, B. R. ;
Foster, J. E. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (02)