Unconditional Cauchy series and uniform convergence on matrices

被引:7
作者
Aizpuru, A
Gutiérrez-Dávila, A
机构
[1] Univ Cadiz, Dept Matemat, Puerto Real 11510, Spain
[2] Univ Cadiz, Dept Matemat, Puerto Real 11510, Spain
关键词
unconditional Cauchy series; Orlicz-Pettis theorem; summation; Hahn-Schur theorem; basic matrix theorem;
D O I
10.1142/S0252959904000317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors obtain new characterizations of unconditional Cauchy series in terms of separation properties of subfamilies of P(N), and a generalization of the Orlicz-Pettis Theorem is also obtained. New results on the uniform convergence on matrices and a new version of the Hahn-Schur summation theorem axe proved. For matrices whose rows define unconditional Cauchy series, a better sufficient condition for the basic Matrix Theorem of Antosik and Swartz, new necessary conditions and a new proof of that theorem axe given.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 12 条
[11]  
Wu JD, 2002, TAIWAN J MATH, V6, P433
[12]  
Wu JD, 2001, J MATH ANAL APPL, V257, P29