Unconditional Cauchy series and uniform convergence on matrices

被引:7
作者
Aizpuru, A
Gutiérrez-Dávila, A
机构
[1] Univ Cadiz, Dept Matemat, Puerto Real 11510, Spain
[2] Univ Cadiz, Dept Matemat, Puerto Real 11510, Spain
关键词
unconditional Cauchy series; Orlicz-Pettis theorem; summation; Hahn-Schur theorem; basic matrix theorem;
D O I
10.1142/S0252959904000317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors obtain new characterizations of unconditional Cauchy series in terms of separation properties of subfamilies of P(N), and a generalization of the Orlicz-Pettis Theorem is also obtained. New results on the uniform convergence on matrices and a new version of the Hahn-Schur summation theorem axe proved. For matrices whose rows define unconditional Cauchy series, a better sufficient condition for the basic Matrix Theorem of Antosik and Swartz, new necessary conditions and a new proof of that theorem axe given.
引用
收藏
页码:335 / 346
页数:12
相关论文
共 12 条
[1]   Boolean algebras and uniform convergence of series [J].
Aizpuru, A ;
Gutiérrez-Dávila, A ;
Pérez-Fernández, FJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 284 (01) :89-96
[2]  
AIZPURU A, IN PRESS ACTA MATH S
[3]  
ANTOSIK P, 1985, LECT NOTES MATH
[4]  
Diestel J., 1984, SEQUENCES SERIES BAN
[5]  
Samaratunga R.T., 1988, SE ASIAN B MATH, V12, P11
[6]  
SCHACHERMAYER W, 1982, THESIS ROZPRAWY MAT, V214
[7]   THE SCHUR LEMMA FOR BOUNDED MULTIPLIER CONVERGENT SERIES [J].
SWARTZ, C .
MATHEMATISCHE ANNALEN, 1983, 263 (03) :283-288
[8]  
Swartz C., 1996, SE ASIAN B MATH, V20, P57
[9]  
SWARTZ C, 1996, INFINITE MATRIX GLID
[10]   An automatic adjoint theorem and its applications [J].
Wu, JD ;
Lu, SJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) :1735-1741