Pseudospectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with particle-in-cell codes

被引:25
作者
Blaclard, G. [1 ]
Vincenti, H. [1 ,2 ]
Lehe, R. [1 ]
Vay, J. L. [1 ]
机构
[1] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] CEA Saclay, Lasers Interact & Dynam Lab, F-91191 Gif Sur Yvette, France
基金
美国能源部;
关键词
NONSTANDARD FINITE-DIFFERENCES; ALGORITHM; PULSES; INTENSITY; OPTICS;
D O I
10.1103/PhysRevE.96.033305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With the advent of petawatt class lasers, the very large laser intensities attainable on target should enable the production of intense high-order Doppler harmonics from relativistic laser-plasma mirror interactions. At present, the modeling of these harmonics with particle-in-cell (PIC) codes is extremely challenging as it implies an accurate description of tens to hundreds of harmonic orders on a broad range of angles. In particular, we show here that due to the numerical dispersion of waves they induce in vacuum, standard finite difference time domain (FDTD) Maxwell solvers employed in most PIC codes can induce a spurious angular deviation of harmonic beams potentially degrading simulation results. This effect was extensively studied and a simple toy model based on the Snell-Descartes law was developed that allows us to finely predict the angular deviation of harmonics depending on the spatiotemporal resolution and the Maxwell solver used in the simulations. Our model demonstrates that the mitigation of this numerical artifact with FDTD solvers mandates very high spatiotemporal resolution preventing realistic three-dimensional (3D) simulations even on the largest computers available at the time of writing. We finally show that nondispersive pseudospectral analytical time domain solvers can considerably reduce the spatiotemporal resolution required to mitigate this spurious deviation and should enable in the near future 3D accurate modeling on supercomputers in a realistic time to solution.
引用
收藏
页数:10
相关论文
共 30 条
[1]   Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma [J].
Baeva, T. ;
Gordienko, S. ;
Pukhov, A. .
PHYSICAL REVIEW E, 2006, 74 (04)
[2]   High-accuracy yee algorithm based on nonstandard finite differences: New developments and verifications [J].
Cole, JB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2002, 50 (09) :1185-1191
[3]   A high-accuracy realization of the Yee algorithm using non-standard finite differences [J].
Cole, JB .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1997, 45 (06) :991-996
[4]   Characteristics of an envelope model for laser-plasma accelerator simulation [J].
Cowan, Benjamin M. ;
Bruhwiler, David L. ;
Cormier-Michel, Estelle ;
Esarey, Eric ;
Geddes, Cameron G. R. ;
Messmer, Peter ;
Paul, Kevin M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (01) :61-86
[5]   Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses -: art. no. 026402 [J].
Doumy, G ;
Quéré, F ;
Gobert, O ;
Perdrix, M ;
Martin, P ;
Audebert, P ;
Gauthier, JC ;
Geindre, JP ;
Wittmann, T .
PHYSICAL REVIEW E, 2004, 69 (02) :026402-1
[6]   Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces [J].
Dromey, B. ;
Kar, S. ;
Bellei, C. ;
Carroll, D. C. ;
Clarke, R. J. ;
Green, J. S. ;
Kneip, S. ;
Markey, K. ;
Nagel, S. R. ;
Simpson, P. T. ;
Willingale, L. ;
McKenna, P. ;
Neely, D. ;
Najmudin, Z. ;
Krushelnick, K. ;
Norreys, P. A. ;
Zepf, M. .
PHYSICAL REVIEW LETTERS, 2007, 99 (08)
[7]   High harmonic generation in the relativistic limit [J].
Dromey, B. ;
Zepf, M. ;
Gopal, A. ;
Lancaster, K. ;
Wei, M. S. ;
Krushelnick, K. ;
Tatarakis, M. ;
Vakakis, N. ;
Moustaizis, S. ;
Kodama, R. ;
Tampo, M. ;
Stoeckl, C. ;
Clarke, R. ;
Habara, H. ;
Neely, D. ;
Karsch, S. ;
Norreys, P. .
NATURE PHYSICS, 2006, 2 (07) :456-459
[8]   HIGH-ORDER FINITE-DIFFERENCES AND THE PSEUDOSPECTRAL METHOD ON STAGGERED GRIDS [J].
FORNBERG, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :904-918
[9]   Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses [J].
Gonoskov, A. A. ;
Korzhimanov, A. V. ;
Kim, A. V. ;
Marklund, M. ;
Sergeev, A. M. .
PHYSICAL REVIEW E, 2011, 84 (04)
[10]  
Haber I., 1973, P 6 C NUM SIM PLASM, V8, P46