Asymptotics of solutions to the periodic problem for the nonlinear damped wave equation

被引:3
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Rodriguez-Ceballos, Joel A. [2 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2010年 / 17卷 / 03期
关键词
Asymptotics of solutions; Periodic problem; Nonlinear damped wave equations; GINZBURG-LANDAU EQUATION; LARGE TIME BEHAVIOR; GLOBAL EXISTENCE; BURGERS-EQUATION; DECAY PROPERTIES; STABILITY; SYSTEMS;
D O I
10.1007/s00030-010-0058-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study large time asymptotic behavior of solutions to the periodic problem for the nonlinear damped wave equation {u(tt) + 2 alpha u(t) - beta u(xx) = -lambda vertical bar u vertical bar(sigma)u, x is an element of Omega, t > 0, u(0, x) = phi (x), u(t)(0, x) = psi (x), x is an element of Omega, where Omega = [-pi, pi], alpha, beta, lambda, sigma > 0. We prove that if the initial data phi is an element of H(1) and psi is an element of L(2), then there exists a unique solution u (t, x) is an element of C ([0, infinity); H(1)) of the periodic problem which has the time decay estimates parallel to u(t)parallel to(L infinity) <= C < t >(-1/sigma), parallel to partial derivative(t)u (t)parallel to(L infinity) <= C < t >(-1/sigma-1/2) for all t > 0. Moreover under some additional conditions we find the asymptotic formulas for the solutions.
引用
收藏
页码:355 / 369
页数:15
相关论文
共 42 条
[1]  
Biller P, 1984, B POL ACAD SCI MATH, V32, P401
[2]  
BU C, 1998, HOKKAIDO MATH J, V27, P197
[3]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[4]  
2-5
[5]   LARGE TIME BEHAVIOR OF PERIODIC-SOLUTIONS OF HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS [J].
DAFERMOS, CM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (01) :183-202
[6]   WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION [J].
DOERING, CR ;
GIBBON, JD ;
LEVERMORE, CD .
PHYSICA D, 1994, 71 (03) :285-318
[7]   GLOBAL EXISTENCE THEORY FOR A GENERALIZED GINZBURG-LANDAU EQUATION [J].
DUAN, JQ ;
HOLMES, P ;
TITI, ES .
NONLINEARITY, 1992, 5 (06) :1303-1314
[9]  
Foias C., 1995, J. Dynam. Differential Equations, V7, P365
[10]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308