Compact operators without extended eigenvalues

被引:16
作者
Shkarin, S. [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
extended eigenvalues; compact operators; quasinilpotent operators; similarity;
D O I
10.1016/j.jmaa.2006.10.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A complex number lambda is called an extended eigenvalue of a bounded linear operator T on a Banach space B if there exists a non-zero bounded linear operator X acting on B such that XT = lambda TX. We show that there are compact quasinilpotent operators on a separable Hilbert space, for which the set of extended eigenvalues is the one-point set {1}. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [21] Subadditivity Inequalities for Compact Operators
    Bourin, Jean-Christophe
    Harada, Tetsuo
    Lee, Eun-Young
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (01): : 25 - 36
  • [22] COMPACT BILINEAR OPERATORS AND COMMUTATORS
    Benyi, Arpad
    Torres, Rodolfo H.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3609 - 3621
  • [23] COMPACT OPERATORS ON HILBERT MODULES
    Anoussis, M.
    Todorov, I. G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (01) : 257 - 261
  • [24] An image problem for compact operators
    Chalendar, I
    Partington, JR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) : 1391 - 1396
  • [25] Operators with connected spectrum plus compact operators = strongly irreducible operators
    Jiang, CL
    Ji, YQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (09): : 925 - 931
  • [26] Compact Operators that Commute with a Contraction
    Kellay, K.
    Zarrabi, M.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 65 (04) : 543 - 550
  • [27] Compact Operators that Commute with a Contraction
    K. Kellay
    M. Zarrabi
    Integral Equations and Operator Theory, 2009, 65
  • [28] Compact operators on the Hahn space
    Malkowsky, Eberhard
    Rakocevic, Vladimir
    Tug, Orhan
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (03): : 519 - 551
  • [29] Joint inversion of compact operators
    Mead, Jodi L.
    Ford, James F.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01): : 105 - 118