MARTIN BOUNDARY OF A KILLED RANDOM WALK ON A QUADRANT

被引:24
作者
Ignatiouk-Robert, Irina [1 ]
Loree, Christophe [1 ]
机构
[1] Univ Cergy Pontoise, CNRS, UMR 8088, F-95302 Cergy Pontoise, France
关键词
Martin boundary; sample path large deviations; random walk;
D O I
10.1214/09-AOP506
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A complete representation of the Martin boundary of killed random walks on the quadrant N* x N* is obtained. It is proved that the corresponding full Martin compactification of the quadrant N* x N* is homeomorphic to the closure of the set {w = z/(1 +vertical bar z vertical bar) : Z is an element of N* x N*} in R(2). The method is based on a ratio limit theorem for local processes and large deviation techniques.
引用
收藏
页码:1106 / 1142
页数:37
相关论文
共 20 条
[1]   Martin boundaries associated with a killed random walk [J].
Alili, L ;
Doney, RA .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (03) :313-338
[2]  
[Anonymous], 2000, CAMBRIDGE TRACTS MAT
[3]  
[Anonymous], 1971, CONV CALC PROB
[4]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[5]   ON MOMENTS OF LADDER HEIGHT VARIABLES [J].
CHOW, YS .
ADVANCES IN APPLIED MATHEMATICS, 1986, 7 (01) :46-54
[6]  
Dembo A., 1998, APPL MATH NEW YORK, V38
[7]   The Martin boundary and ratio limit theorems for killed random walks [J].
Doney, RA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :761-768
[8]  
DOOB JL, 1959, J MATH MECH, V8, P433
[9]   Bridges and networks: Exact asymptotics [J].
Foley, RD ;
McDonald, DR .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1B) :542-586
[10]  
Hennequin P.- L., 1963, ANN I H POINCARE, V18, P109