Vortices in spatially inhomogeneous superfluids

被引:57
作者
Sheehy, DE [1 ]
Radzihovsky, L [1 ]
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.063620
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study vortices in a radially inhomogeneous superfluid, as realized by a trapped degenerate Bose gas in a uniaxially symmetric potential. We show that, in contrast to a homogeneous superfluid, an off-axis vortex corresponds to an anisotropic superflow whose profile strongly depends on the distance to the trap axis. One consequence of this superflow anisotropy is vortex precession about the trap axis in the absence of an imposed rotation. In the complementary regime of a finite prescribed rotation, we compute the minimum-energy vortex density, showing that in the rapid-rotation limit it is extremely uniform, despite a strongly inhomogeneous (nearly) Thomas-Fermi condensate density rho(s)(r). The weak radially dependent contribution [proportional todel(2) ln rho(s)(r)] to the vortex distribution, that vanishes with the number of vortices N-v as 1/N-v, arises from the interplay between vortex quantum discreteness (namely their inability to faithfully support the imposed rigid-body rotation) and the inhomogeneous superfluid density. This leads to an enhancement of the vortex density at the center of a typical concave trap, a prediction that is in quantitative agreement with recent experiments. One striking consequence of the inhomogeneous vortex distribution is an azimuthally directed, radially shearing superflow.
引用
收藏
页码:063620 / 1
页数:19
相关论文
共 37 条
[1]   DYNAMICS OF SUPERFLUID FILMS [J].
AMBEGAOKAR, V ;
HALPERIN, BI ;
NELSON, DR ;
SIGGIA, ED .
PHYSICAL REVIEW B, 1980, 21 (05) :1806-1826
[2]   Vortex precession in Bose-Einstein condensates: Observations with filled and empty cores [J].
Anderson, BP ;
Haljan, PC ;
Wieman, CE ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2000, 85 (14) :2857-2860
[3]  
Anglin J. R., CONDMAT0210063
[4]   Vortices near surfaces of Bose-Einstein condensates [J].
Anglin, JR .
PHYSICAL REVIEW A, 2002, 65 (06) :14
[5]   BERRY PHASE AND THE MAGNUS FORCE FOR A VORTEX LINE IN A SUPERCONDUCTOR [J].
AO, P ;
THOULESS, DJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (14) :2158-2161
[6]   Ground-state properties of magnetically trapped Bose-condensed rubidium gas [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :6-9
[7]   THE HYDRODYNAMICS OF ROTATING SUPERFLUIDS .1. ZERO-TEMPERATURE, NONDISSIPATIVE THEORY [J].
BAYM, G ;
CHANDLER, E .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1983, 50 (1-2) :57-87
[8]  
BAYM G, CONDMAT0308325
[9]   Fast rotation of a Bose-Einstein condensate [J].
Bretin, V ;
Stock, S ;
Seurin, Y ;
Dalibard, J .
PHYSICAL REVIEW LETTERS, 2004, 92 (05) :4-504034
[10]   Predicted signatures of rotating Bose-Einstein condensates [J].
Butts, DA ;
Rokhsar, DS .
NATURE, 1999, 397 (6717) :327-329