The modularity of some Q-curves

被引:2
作者
Roberts, BB [1 ]
Washington, LC [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
elliptic curves; modular forms; Q-curves;
D O I
10.1023/A:1000210813088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Q-curve is an elliptic curve, defined over a number field, that is isogenous to each of its Galois conjugates. Ribet showed that Serre's conjectures imply that such curves should be modular. Let E be an elliptic curve defined over a quadratic field such that E is 3-isogenous to its Galois conjugate. We give an algorithm for proving any such E is modular and give an explicit example involving a quotient of J(0)(169). As a by-product, we obtain a pair of 19-isogenous elliptic curves, and relate this to the existence of a rational point of order 19 on J(1)(13).
引用
收藏
页码:35 / 49
页数:15
相关论文
共 28 条
[1]   HECKE OPERATORS ON GAMMAO(M) [J].
ATKIN, AOL ;
LEHNER, J .
MATHEMATISCHE ANNALEN, 1970, 185 (02) :134-&
[2]  
Cremona J.E., 1992, ALGORITHMS MODULAR E
[3]   MODULAR SYMBOLS FOR GAMMA-1(N) AND ELLIPTIC-CURVES WITH EVERYWHERE GOOD REDUCTION [J].
CREMONA, JE .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :199-218
[4]  
de Weger B. M. M., 1989, 65 CWI
[5]   On deformation rings and Hecke rings [J].
Diamond, F .
ANNALS OF MATHEMATICS, 1996, 144 (01) :137-166
[6]   COMPUTING INTEGRAL POINTS ON ELLIPTIC-CURVES [J].
GEBEL, J ;
PETHO, A ;
ZIMMER, HG .
ACTA ARITHMETICA, 1994, 68 (02) :171-192
[7]  
Lang S., 1965, ALGEBRA
[8]  
LIVNE R, 1987, CONT MATH, V67
[9]   POINTS OF ORDER-13 ON ELLIPTIC CURVES [J].
MAZUR, B ;
TATE, J .
INVENTIONES MATHEMATICAE, 1973, 22 (01) :41-49
[10]   ARITHMETIC OF ABELIAN VARIETIES [J].
MILNE, JS .
INVENTIONES MATHEMATICAE, 1972, 17 (03) :177-&