Relaxation of Alternating Iterative Algorithms for the Cauchy Problem Associated with the Modified Helmholtz Equation

被引:1
作者
Johansson, B. Tomas [1 ]
Marin, Liviu [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Romanian Acad, Inst Solid Mech, Bucharest 010141, Romania
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2009年 / 13卷 / 02期
关键词
Helmholtz Equation; Inverse Problem; Cauchy Problem; Alternating Iterative Algorithms; Relaxation Procedure; Boundary Element Method (BEM); BOUNDARY KNOT METHOD; REGULARIZATION METHOD; MESHLESS METHOD; RECONSTRUCTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of Kozlov, Maz'ya and Fomin (1991) applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.
引用
收藏
页码:153 / 189
页数:37
相关论文
共 48 条
[31]   Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation [J].
Marin, L ;
Elliott, L ;
Heggs, PJ ;
Ingham, DB ;
Lesnic, D ;
Wen, X .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (11) :1933-1947
[32]   Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations [J].
Marin, L ;
Elliott, L ;
Heggs, PJ ;
Ingham, DB ;
Lesnic, D ;
Wen, X .
COMPUTATIONAL MECHANICS, 2003, 31 (3-4) :367-377
[33]   An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation [J].
Marin, L ;
Elliott, L ;
Heggs, PJ ;
Ingham, DB ;
Lesnic, D ;
Wen, X .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) :709-722
[34]  
MARIN L, 2010, COMPUTER ME IN PRESS
[35]  
Marin L, 2009, CMC-COMPUT MATER CON, V12, P71
[36]  
Marin L, 2009, CMC-COMPUT MATER CON, V10, P259
[37]   Boundary element-minimal error method for the Cauchy problem associated with Helmholtz-type equations [J].
Marin, Liviu .
COMPUTATIONAL MECHANICS, 2009, 44 (02) :205-219
[38]  
Qian XQ, 2008, CMC-COMPUT MATER CON, V7, P33
[39]   Tikhonov type regularization method for the Cauchy problem of the modified Helmholtz equation [J].
Qin, H. H. ;
Wen, D. W. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) :617-628
[40]   Two regularization methods for the Cauchy problems of the Helmholtz equation [J].
Qin, H. H. ;
Wei, T. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (04) :947-967