Genome-wide identification and analysis of the trihelix transcription factors in sunflower

被引:5
作者
Song, J. [1 ]
Shen, W. Y. [1 ,2 ]
Shaheen, S. [1 ]
Li, Y. Y. [1 ]
Liu, Z. R. [1 ]
Wang, Z. [1 ]
Pang, H. B. [1 ]
Ahmed, Z. [3 ,4 ,5 ]
机构
[1] Shenyang Normal Univ, Coll Life Sci, Shenyang 110034, Peoples R China
[2] Northeast Normal Univ, Inst Grassland Sci, Key Lab Vegetat Ecol, Minist Educ, Changchun 130024, Peoples R China
[3] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Xinjiang, Peoples R China
[4] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Cele Natl Stn Observat & Res Desert Grassland Eco, Urumqi 848300, Xinjiang, Peoples R China
[5] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Xinjiang Desert Plant Roots Ecol & Vegetat Restor, Urumqi 830011, Peoples R China
关键词
cis-acting elements; chromosome distribution; Helianthus annuus; MEME; motif composition; phylogenetic relationships; TRIHELIX TRANSCRIPTION FACTOR; GENE FAMILY; ABIOTIC STRESSES; EXPRESSION; ARABIDOPSIS; EVOLUTION; RICE; TOLERANCE;
D O I
10.32615/bp.2021.006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The trihelix genes encode plant-specific transcription factors, which play a vital role in plant morphological and developmental processes. However, information about the presence of trihelix genes in sunflower (Helianthus annuus L.) is scarce. Sunflower belongs to composite family and possesses strong drought and salt-alkali tolerance. In this study based on H. annuus genome data, we have identified and analyzed the trihelix genes with a complete description of their physical and chemical properties, phylogenetic relationships, motif composition, chromosome distribution, exonintron structure, cis-acting elements, and chromosome collinearity. In H. annuus, 31 full-length trihelix genes were identified and categorized into six subgroups (SIP, GT1, SH4, G delta, GT-gamma, and GT2). Multiple Em for motif elicitation (MEME), used for conservative motif analysis, identified 10 distinct motifs unevenly distributed on 31 trihelix genes. In addition to that, chromosome localization analysis showed the number and distribution of these trihelix genes on 17 chromosomes of H. annuus. Transcriptional structure analysis revealed the structure of introns and exons of different gene members. Furthermore, cis-element analysis identified 19 different types of cis-elements mainly related to abiotic stress, hormones, and growth and development of plant. Results of this study manifested novel insights into phylogenetic relationships and possible functions of H. annuus trihelix genes. Moreover, these findings can assist in future studies regarding specific physiological effects of H. annuus trihelix transcription factors.
引用
收藏
页码:80 / 87
页数:8
相关论文
共 34 条
[1]   Is there a role for trihelix transcription factors in embryo maturation? [J].
Barr, Melissa S. ;
Willmann, Matthew R. ;
Jenik, Pablo D. .
PLANT SIGNALING & BEHAVIOR, 2012, 7 (02) :205-209
[2]   The Trihelix Transcription Factor GTL1 Regulates Ploidy-Dependent Cell Growth in the Arabidopsis Trichome [J].
Breuer, Christian ;
Kawamura, Ayako ;
Ichikawa, Takanari ;
Tominaga-Wada, Rumi ;
Wada, Takuji ;
Kondou, Youichi ;
Muto, Shu ;
Matsui, Minami ;
Sugimoto, Keiko .
PLANT CELL, 2009, 21 (08) :2307-2322
[3]   The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J].
Cannon S.B. ;
Mitra A. ;
Baumgarten A. ;
Young N.D. ;
May G. .
BMC Plant Biology, 4 (1)
[4]   TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data [J].
Chen, Chengjie ;
Chen, Hao ;
Zhang, Yi ;
Thomas, Hannah R. ;
Frank, Margaret H. ;
He, Yehua ;
Xia, Rui .
MOLECULAR PLANT, 2020, 13 (08) :1194-1202
[5]   Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses [J].
Fang, Yujie ;
Xie, Kabin ;
Hou, Xin ;
Hu, Honghong ;
Xiong, Lizhong .
MOLECULAR GENETICS AND GENOMICS, 2010, 283 (02) :157-169
[6]   AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis [J].
Fujita, Y ;
Fujita, M ;
Satoh, R ;
Maruyama, K ;
Parvez, MM ;
Seki, M ;
Hiratsu, K ;
Ohme-Takagi, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2005, 17 (12) :3470-3488
[7]   ASIL1 is required for proper timing of seed filling in Arabidopsis [J].
Gao, Ming-Jun ;
Li, Xiang ;
Lui, Helen ;
Gropp, Gordon M. ;
Lydiate, Derek D. ;
Wei, Shu ;
Hegedus, Dwayne D. .
PLANT SIGNALING & BEHAVIOR, 2011, 6 (12) :1886-1888
[8]   Repression of Seed Maturation Genes by a Trihelix Transcriptional Repressor in Arabidopsis Seedlings [J].
Gao, Ming-Jun ;
Lydiate, Derek J. ;
Li, Xiang ;
Lui, Helen ;
Gjetvaj, Branimir ;
Hegedus, Dwayne D. ;
Rozwadowski, Kevin .
PLANT CELL, 2009, 21 (01) :54-71
[9]   FRIGIDA Delays Flowering in Arabidopsis via a Cotranscriptional Mechanism Involving Direct Interaction with the Nuclear Cap-Binding Complex [J].
Geraldo, Nuno ;
Baeurle, Isabel ;
Kidou, Shin-ichiro ;
Hu, Xiangyang ;
Dean, Caroline .
PLANT PHYSIOLOGY, 2009, 150 (03) :1611-1618
[10]  
Ji Jianhui, 2015, Yichuan, V37, P1228, DOI 10.16288/j.yczz.15-196