Bubbling solutions for a skew-symmetric Chern-Simons system in a torus

被引:2
作者
Han, Xiaosen [1 ]
Huang, Hsin-Yuan [2 ,4 ]
Lin, Chang-Shou [3 ]
机构
[1] Henan Univ, Sch Math, Inst Contemporary Math, Kaifeng 475004, Henan, Peoples R China
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
[3] Natl Taiwan Univ, Taida Inst Math Sci, Ctr Adv Study Theoret Sci, Taipei, Taiwan
[4] Natl Taiwan Univ, Div Math, Natl Ctr Theoret Sci, Taipei, Taiwan
关键词
Skew-symmetric Chern-Simons; system; Bubbling solutions; Non-degeneracy; NONTOPOLOGICAL SOLUTIONS; MULTIVORTEX SOLUTIONS; EXISTENCE; EQUATIONS; MODEL; UNIQUENESS; FIELDS;
D O I
10.1016/j.jfa.2017.04.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish the existence of bubbling solutions for the following skew-symmetric Chern Simons system Delta u(1) + 1/epsilon(2) e(u2) (1 - e(u1)) = 4 pi Sigma N-1 i=1 delta p(1/i) { Delta u(2) + 1/epsilon(2) e(u1) (1 - e(u2)) = 4 pi Sigma N-2 i=1 delta p(2/i) over a parallelogram Omega with doubly periodic boundary condition, where epsilon > 0 is a coupling parameter, and delta(p) denotes the Dirac measure concentrated at p. We obtain that if (N-1 - 1)(N-2 - 1) > 1, there exists an epsilon(o) > 0 such that, for any epsilon is an element of(0, epsilon(o)), the above system admits a solution (u(1),(epsilon), u(2),(epsilon)) satisfying u1,(epsilon) and u(2),(epsilon) blow up simultaneously at the point p*, and 1/epsilon(2) e(uj,k) (1 - e(ui,epsilon)) -> 4 pi N-i delta(p*) , 1 <= i, j <= 2 , i not equal j as epsilon -> 0, where the location of the point p* defined by (1.12) satisfies the condition (1.13). (C) 2017 Elsevier: Inc. All rights reserved.
引用
收藏
页码:1354 / 1396
页数:43
相关论文
共 41 条
[31]   TEST FOR NONRECIPROCAL CIRCULAR BIREFRINGENCE IN YBA2CU3O7 THIN-FILMS AS EVIDENCE FOR BROKEN TIME-REVERSAL SYMMETRY [J].
SPIELMAN, S ;
FESLER, K ;
EOM, CB ;
GEBALLE, TH ;
FEJER, MM ;
KAPITULNIK, A .
PHYSICAL REVIEW LETTERS, 1990, 65 (01) :123-126
[32]   TOPOLOGICAL SOLUTIONS IN THE SELF-DUAL CHERN-SIMONS THEORY - EXISTENCE AND APPROXIMATION [J].
SPRUCK, J ;
YANG, YS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (01) :75-97
[33]   THE EXISTENCE OF NONTOPOLOGICAL SOLITONS IN THE SELF-DUAL CHERN-SIMONS THEORY [J].
SPRUCK, J ;
YANG, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :361-376
[34]   Multiple condensate solutions for the Chern-Simons-Higgs theory [J].
Tarantello, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) :3769-3796
[35]   Uniqueness of selfdual periodic Chern-Simons vortices of topological-type [J].
Tarantello, Gabriella .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (02) :191-217
[36]  
Tarantello G, 2008, PROG NONLINEAR DIFFE, V72, P1
[37]   THE EXISTENCE OF CHERN-SIMONS VORTICES [J].
WANG, RG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (03) :587-597
[38]   DISASSEMBLING ANYONS [J].
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1992, 69 (01) :132-135
[39]   Standing Pulse Solutions in Reaction-Diffusion Systems with Skew-Gradient Structure [J].
Yanagida E. .
Journal of Dynamics and Differential Equations, 2002, 14 (1) :189-205
[40]   Mini-maximizers for reaction-diffusion systems with skew-gradient structure [J].
Yanagida, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :311-335