Fully Learned Multi-swarm Particle Swarm Optimization

被引:0
作者
Niu, Ben [1 ,2 ,3 ]
Huang, Huali [1 ]
Ye, Bin [4 ]
Tan, Lijing [5 ]
Liang, Jane Jing [6 ]
机构
[1] Shenzhen Univ, Coll Management, Shenzhen 518060, Peoples R China
[2] Chinese Acad Sci, Hefei Inst Intelligent Machines, Hefei 230031, Peoples R China
[3] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Hong Kong, Peoples R China
[4] State Grid Anhui Econ Res Inst, Hefei 230022, Peoples R China
[5] Shenzhen Inst Informat Technol, Business Management Sch, Shenzhen 518172, Peoples R China
[6] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China
来源
ADVANCES IN SWARM INTELLIGENCE, PT1 | 2014年 / 8794卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
multi-swarm particle swarm optimization; fully learned; particle swarm optimizer (PSO);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new variant of PSO, called fully learned multi-swarm particle swarm optimization (FLMPSO) for global optimization. In FLMPSO, the whole population is divided into a number of sub-swarms, in which the learning probability is employed to influence the exemplar of each individual and the center position of the best experience found so far by all the sub-swarms is also used to balance exploration and exploitation. Each particle updates its velocity based on its own historical experience or others relying on the learning probability, and the center position is also applied to adjust its flying. The experimental study on a set of six test functions demonstrates that FLMPSO outperform the others in terms of the convergence efficiency and the accuracy.
引用
收藏
页码:150 / 157
页数:8
相关论文
共 17 条
[1]  
Ben Niu, 2013, Advances in Swarm Intelligence. 4th International Conference, ICSI 2013. Proceedings, P72, DOI 10.1007/978-3-642-38703-6_8
[2]  
Ben Niu, 2008, 2008 International Conference on Computational Intelligence and Security, P57, DOI 10.1109/CIS.2008.198
[3]   PS2O: A Multi-Swarm Optimizer for Discrete Optimization [J].
Chen, Hanning ;
Zhu, Yunlong ;
Hu, Kunyuan ;
Ku, Tao .
2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, :587-592
[4]  
Eberhart R., 1995, MHS 95, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[5]  
Hai Shen, 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), P531, DOI 10.1109/BICTA.2010.5645181
[6]  
Kennedy J, 2002, IEEE C EVOL COMPUTAT, P1671, DOI 10.1109/CEC.2002.1004493
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295
[9]   MCPSO: A multi-swarm cooperative particle swarm optimizer [J].
Niu, Ben ;
Zhu, Yunlong ;
He, Xiaoxian ;
Wu, Henry .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (02) :1050-1062
[10]  
Parsopoulos K. E., 2019, LECT SERIES COMPUTAT, P868, DOI DOI 10.1201/9780429081385-222