Frameshifting in Alphaviruses: A Diversity of 3′ Stimulatory Structures

被引:47
作者
Chung, Betty Y. -W. [1 ]
Firth, Andrew E. [1 ]
Atkins, John F. [1 ,2 ]
机构
[1] Univ Coll Cork, BioSci Inst, Cork, Ireland
[2] Univ Utah, Dept Human Genet, Salt Lake City, UT 84112 USA
基金
爱尔兰科学基金会;
关键词
frameshifting; alphavirus; 6K; TransFrame; RIBOSOMAL FRAMESHIFT; RNA PSEUDOKNOTS; MESSENGER-RNA; MUTATIONAL ANALYSIS; VIRUS; GENE; PROTEIN; YEAST; MUTAGENESIS; SIGNAL;
D O I
10.1016/j.jmb.2010.01.044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Programmed ribosomal frameshiffing allows the synthesis of alternative, N-terminally coincident, C-terminally distinct proteins from the same RNA. Many viruses utilize frameshifting to optimize the coding potential of compact genomes, to circumvent the host cell's canonical rule of one functional protein per mRNA, or to express alternative proteins in a fixed ratio. Programmed frameshifting is also used in the decoding of a small number of cellular genes. Recently, specific ribosomal 1 frameshifting was discovered at a conserved U_UUU_UUA motif within the sequence encoding the alphavirus 6K protein. In this case, frameshifting results in the synthesis of an additional protein, termed TF (Trans Frame). This new case of frameshifting is unusual in that the 1 frame ORF is very short and completely embedded within the sequence encoding the overlapping polyprotein. The present work shows that there is remarkable diversity in the 3' sequences that are functionally important for efficient frameshifting at the U_UUU_UUA motif. While many alphavirus species utilize a 3' RNA structure such as a hairpin or pseudoknot, some species (such as Semliki Forest virus) apparently lack any intra-mRNA stimulatory structure, yet just 20 nt 3'-adjacent to the shift site stimulates up to 10% frameshifting. The analysis, both experimental and bioinformatic, significantly expands the known repertoire of 1 frameshifting stimulators in mammalian and insect systems. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:448 / 456
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[2]   Efficiency of a programmed-1 ribosomal frameshift in the different subtypes of the human immunodeficiency virus type 1 group M [J].
Baril, M ;
Dulude, D ;
Gendron, K ;
Lemay, G ;
Brakier-Gingras, L .
RNA, 2003, 9 (10) :1246-1253
[3]   The frameshift stimulatory signal of human immunodeficiency virus type 1 group O is a pseudoknot [J].
Baril, M ;
Dulude, D ;
Steinberg, SV ;
Brakier-Gingras, L .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (03) :571-583
[4]   A-1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA [J].
Barry, JK ;
Miller, WA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11133-11138
[5]   Towards a computational model for-1 eukaryotic frameshifting sites [J].
Bekaert, M ;
Bidou, L ;
Denise, A ;
Duchateau-Nguyen, G ;
Forest, JP ;
Froidevaux, C ;
Hatin, I ;
Rousset, JP ;
Termier, M .
BIOINFORMATICS, 2003, 19 (03) :327-335
[6]   Influence of the stacking potential of the base 3′ of tandem shift codons on-1 ribosomal frameshifting used for gene expression [J].
Bertrand, C ;
Prère, MF ;
Gesteland, RF ;
Atkins, JF ;
Fayet, O .
RNA, 2002, 8 (01) :16-28
[7]  
Brakier-Gingras L, 2010, NUCLEIC ACIDS MOL BI, V24, P175, DOI 10.1007/978-0-387-89382-2_8
[8]   Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting [J].
Brierley, I ;
Pennell, S .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2001, 66 :233-248
[9]   MUTATIONAL ANALYSIS OF THE SLIPPERY-SEQUENCE COMPONENT OF A CORONAVIRUS RIBOSOMAL FRAMESHIFTING SIGNAL [J].
BRIERLEY, I ;
JENNER, AJ ;
INGLIS, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (02) :463-479
[10]  
Brierley I, 2010, NUCLEIC ACIDS MOL BI, V24, P149, DOI 10.1007/978-0-387-89382-2_7