Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis

被引:63
作者
Bartels, S
Carstensen, C
Dolzmann, G
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
D O I
10.1007/s00211-004-0548-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of elliptic boundary value problems with finite element methods requires the approximation of given Dirichlet data u(D) by functions u(D,h) in the trace space of a finite element space on Gamma(D). In this paper, quantitative a priori and a posteriori estimates are presented for two choices of u(D,h), namely the nodal interpolation and the orthogonal projection in L-2(Gamma(D)) onto the trace space. Two corresponding extension operators allow for an estimate of the boundary data approximation in global H-1 and L-2 a priori and a posteriori error estimates. The results imply that the orthogonal projection leads to better estimates in the sense that the influence of the approximation error on the estimates is of higher order than for the nodal interpolation.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 18 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]  
Babuska I., 2001, NUMER MATH SCI COMP
[3]   Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM [J].
Bartels, S ;
Carstensen, C .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :971-994
[4]  
BARTELS S, 2004, IN PRESS NUMER MATH
[5]  
BARTELS S, 2004, POSTERIORI ERROR ANA
[6]  
Bramble JH, 2002, MATH COMPUT, V71, P147, DOI 10.1090/S0025-5718-01-01314-X
[7]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587
[8]   An adaptive mesh-refining algorithm allowing for an H1 stable L2 projection onto Courant finite element spaces [J].
Carstensen, C .
CONSTRUCTIVE APPROXIMATION, 2004, 20 (04) :549-564
[9]   Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM [J].
Carstensen, C ;
Bartels, S .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :945-969
[10]   A posteriori error estimates for nonconforming finite element methods [J].
Carstensen, C ;
Bartels, S ;
Jansche, S .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :233-256