Neural networks;
Delays;
Global robust stability;
LMI-BASED CRITERIA;
CONSTANT;
D O I:
10.1016/j.nonrwa.2009.01.008
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, the global robust exponential stability of interval neural networks with delays is investigated. Employing homeomorphism techniques and Lyapunov functions, we establish some sufficient conditions for the existence, uniqueness, and global robust exponential stability of the equilibrium point for delayed neural networks. It is shown that the obtained results improve and generalize the previously published results. (C) 2009 Elsevier Ltd. All rights reserved.
机构:Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Li, XM
;
Huang, LH
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Huang, LH
;
Zhu, HY
论文数: 0引用数: 0
h-index: 0
机构:Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
机构:Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Li, XM
;
Huang, LH
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R ChinaHunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
Huang, LH
;
Zhu, HY
论文数: 0引用数: 0
h-index: 0
机构:Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China