Bayesian optimization for estimating the maximum tolerated dose in Phase I clinical trials
被引:6
|
作者:
Takahashi, Ami
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Inst Technol, Sch Comp, Dept Math & Comp Sci, Tokyo, Japan
Pfizer R&D Japan, Clin Stat, Biometr & Data Management, Tokyo, JapanTokyo Inst Technol, Sch Comp, Dept Math & Comp Sci, Tokyo, Japan
Takahashi, Ami
[1
,2
]
Suzuki, Taiji
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Tokyo, Japan
RIKEN, Ctr Adv Intelligence Project, Wako, Saitama, JapanTokyo Inst Technol, Sch Comp, Dept Math & Comp Sci, Tokyo, Japan
Suzuki, Taiji
[3
,4
]
机构:
[1] Tokyo Inst Technol, Sch Comp, Dept Math & Comp Sci, Tokyo, Japan
[2] Pfizer R&D Japan, Clin Stat, Biometr & Data Management, Tokyo, Japan
[3] Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Math Informat, Tokyo, Japan
[4] RIKEN, Ctr Adv Intelligence Project, Wako, Saitama, Japan
We introduce a Bayesian optimization method for estimating the maximum tolerated dose in this article. A number of parametric model-based methods have been proposed to estimate the maximum tolerated dose; however, parametric model-based methods need an assumption that dose-toxicity relationships follow specific theoretical models. This assumption potentially leads to suboptimal dose selections if the dose-toxicity curve is misspecified. Our proposed method is based on a Bayesian optimization framework for finding a global optimizer of unknown functions that are expensive to evaluate while using very few function evaluations. It models dose-toxicity relationships with a nonparametric model; therefore, a more flexible estimation can be realized compared with existing parametric model-based methods. Also, most existing methods rely on point estimates of dose-toxicity curves in their dose selections. In contrast, our proposed method exploits a probabilistic model for an unknown function to determine the next dose candidate without ignoring the uncertainty of posterior while imposing some dose-escalation limitations. We investigate the operating characteristics of our proposed method by comparing them with those of the Bayesian-based continual reassessment method and two different nonparametric methods. Simulation results suggest that our proposed method works successfully in terms of selections of the maximum tolerated dose correctly and safe dose allocations.
机构:
Obuda Univ, Biomat & Appl Artificial Intelligence Inst, John von Neumann Fac Informat, Becsi Ut 96-B, H-1034 Budapest, Hungary
Obuda Univ, Univ Res & Innovat Ctr, Physiol Controls Res Ctr, Becsi Ut 96-B, H-1034 Budapest, HungaryObuda Univ, Biomat & Appl Artificial Intelligence Inst, John von Neumann Fac Informat, Becsi Ut 96-B, H-1034 Budapest, Hungary
机构:
Samuel Oschin Comprehens Canc Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USASamuel Oschin Comprehens Canc Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
Tighiouart, Mourad
Li, Quanlin
论文数: 0引用数: 0
h-index: 0
机构:
Samuel Oschin Comprehens Canc Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USASamuel Oschin Comprehens Canc Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
Li, Quanlin
Rogatko, Andre
论文数: 0引用数: 0
h-index: 0
机构:
Samuel Oschin Comprehens Canc Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USASamuel Oschin Comprehens Canc Inst, 8700 Beverly Blvd, Los Angeles, CA 90048 USA
机构:
Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
机构:
Fudan Univ, Sch Publ Hlth, Shanghai, Peoples R ChinaUniv Chicago, 5841 South Maryland Ave MC 2000, Chicago, IL 60637 USA
Lyu, Jiaying
Curran, Emily
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, 5841 South Maryland Ave MC 2000, Chicago, IL 60637 USAUniv Chicago, 5841 South Maryland Ave MC 2000, Chicago, IL 60637 USA
Curran, Emily
Ji, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, 5841 South Maryland Ave MC 2000, Chicago, IL 60637 USA
NorthShore Univ Hlth Syst, Evanston, IL USAUniv Chicago, 5841 South Maryland Ave MC 2000, Chicago, IL 60637 USA
机构:
Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
Iasonos, Alexia
Gounder, Mrinal
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dev Therapeut Ctr, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
Gounder, Mrinal
Spriggs, David R.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Gynecol Med Oncol Serv, Dept Med, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
Spriggs, David R.
Gerecitano, John F.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Dev Therapeut Ctr, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
Gerecitano, John F.
Hyman, David M.
论文数: 0引用数: 0
h-index: 0
机构:
Mem Sloan Kettering Canc Ctr, Gynecol Med Oncol Serv, Dept Med, New York, NY 10065 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
Hyman, David M.
Zohar, Sarah
论文数: 0引用数: 0
h-index: 0
机构:
INSERM, U717, Dept Biostat, F-75005 Paris, FranceMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA
Zohar, Sarah
O'Quigley, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, INSERM, F-75005 Paris, FranceMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10065 USA