Automated and Manual Quantification of Tumour Cellularity in Digital Slides for Tumour Burden Assessment

被引:33
作者
Akbar, Shazia [1 ,2 ,3 ]
Peikari, Mohammad [2 ]
Salama, Sherine [4 ]
Panah, Azadeh Yazdan [4 ]
Nofech-Mozes, Sharon [4 ]
Martel, Anne L. [1 ,2 ,3 ]
机构
[1] Sunnybrook Res Inst, Phys Sci, Toronto, ON, Canada
[2] Univ Toronto, Med Biophys, Toronto, ON, Canada
[3] Vector Inst, Toronto, ON, Canada
[4] Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
基金
美国国家卫生研究院;
关键词
ADVANCED BREAST-CANCER; NEOADJUVANT CHEMOTHERAPY; SURVIVAL; NUCLEI;
D O I
10.1038/s41598-019-50568-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The residual cancer burden index is an important quantitative measure used for assessing treatment response following neoadjuvant therapy for breast cancer. It has shown to be predictive of overall survival and is composed of two key metrics: qualitative assessment of lymph nodes and the percentage of invasive or in situ tumour cellularity (TC) in the tumour bed (TB). Currently, TC is assessed through eye-balling of routine histopathology slides estimating the proportion of tumour cells within the TB. With the advances in production of digitized slides and increasing availability of slide scanners in pathology laboratories, there is potential to measure TC using automated algorithms with greater precision and accuracy. We describe two methods for automated TC scoring: 1) a traditional approach to image analysis development whereby we mimic the pathologists' workflow, and 2) a recent development in artificial intelligence in which features are learned automatically in deep neural networks using image data alone. We show strong agreements between automated and manual analysis of digital slides. Agreements between our trained deep neural networks and experts in this study (0.82) approach the inter-rater agreements between pathologists (0.89). We also reveal properties that are captured when we apply deep neural network to whole slide images, and discuss the potential of using such visualisations to improve upon TC assessment in the future.
引用
收藏
页数:9
相关论文
共 20 条
  • [1] Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials
    Alberro, J. A.
    Ballester, B.
    Deulofeu, P.
    Fabregas, R.
    Fraile, M.
    Gubern, J. M.
    Janer, J.
    Moral, A.
    de Pablo, J. L.
    Penalva, G.
    Puig, P.
    Ramos, M.
    Rojo, R.
    Santesteban, P.
    Serra, C.
    Sola, M.
    Solarnau, L.
    Solsona, J.
    Veloso, E.
    Vidal, S.
    Abe, O.
    Abe, R.
    Enomoto, K.
    Kikuchi, K.
    Koyama, H.
    Masuda, H.
    Nomura, Y.
    Ohashi, Y.
    Sakai, K.
    Sugimachi, K.
    Toi, M.
    Tominaga, T.
    Uchino, J.
    Yoshida, M.
    Coles, C. E.
    Haybittle, J. L.
    Moebus, V.
    Leonard, C. F.
    Calais, G.
    Garaud, P.
    Collett, V.
    Davies, C.
    Delmestri, A.
    Sayer, J.
    Harvey, V. J.
    Holdaway, I. M.
    Kay, R. G.
    Mason, B. H.
    Forbe, J. F.
    Franci, P. A.
    [J]. LANCET ONCOLOGY, 2018, 19 (01) : 27 - 39
  • [2] [Anonymous], 2016, CoRR abs/1512.00567, DOI DOI 10.1109/CVPR.2016.308
  • [3] High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
    Cruz-Roa, Angel
    Gilmore, Hannah
    Basavanhally, Ajay
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie
    Tomaszewski, John
    Madabhushi, Anant
    Gonzalez, Fabio
    [J]. PLOS ONE, 2018, 13 (05):
  • [4] Doyle S, 2008, 5 IEEE INT S BIOM IM, DOI DOI 10.1109/ISBI.2008.4541041
  • [5] Gurcan Metin N, 2009, IEEE Rev Biomed Eng, V2, P147, DOI 10.1109/RBME.2009.2034865
  • [6] Janowczyk Andrew, 2016, J Pathol Inform, V7, P29, DOI 10.4103/2153-3539.186902
  • [7] Extraction of informative cell features by segmentation of densely clustered tissue images
    Kothari, Sonal
    Chaudry, Qaiser
    Wang, May D.
    [J]. 2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 6706 - 6709
  • [8] Liu Chi, 2016, J Pathol Inform, V7, P42, DOI 10.4103/2153-3539.192810
  • [9] Predictors of Locoregional Recurrence After Neoadjuvant Chemotherapy: Results From Combined Analysis of National Surgical Adjuvant Breast and Bowel Project B-18 and B-27
    Mamounas, Eleftherios P.
    Anderson, Stewart J.
    Dignam, James J.
    Bear, Harry D.
    Julian, Thomas B.
    Geyer, Charles E., Jr.
    Taghian, Alphonse
    Wickerham, D. Lawrence
    Wolmark, Norman
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (32) : 3960 - 3966
  • [10] An Image Analysis Resource for Cancer Research: PIIP-Pathology Image Informatics Platform for Visualization, Analysis, and Management
    Martel, Anne L.
    Hosseinzadeh, Dan
    Senaras, Caglar
    Zhou, Yu
    Yazdanpanah, Azadeh
    Shojaii, Rushin
    Patterson, Emily S.
    Madabhushi, Anant
    Gurcan, Metin N.
    [J]. CANCER RESEARCH, 2017, 77 (21) : E83 - E86