Optimal Wind Bidding Strategies in Day-Ahead Markets

被引:1
作者
Gomes, Isaias L. R. [2 ]
Pousinho, Hugo M. I. [1 ]
Melicio, Rui [1 ,2 ]
Mendes, Victor M. F. [2 ,3 ]
机构
[1] Univ Lisbon, Inst Super Tecn, IDMEC LAETA, Lisbon, Portugal
[2] Univ Evora, Escola Ciencias & Tecnol, Dept Fis, Evora, Portugal
[3] Inst Super Engn Lisboa, Lisbon, Portugal
来源
TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS | 2016年 / 470卷
关键词
Bidding strategies; Wind power system; Stochastic linear programming; Day-ahead market; SHORT-TERM ENERGY; ELECTRICITY MARKET; RENEWABLE ENERGY; POWER-SYSTEM; GENERATION; STORAGE;
D O I
10.1007/978-3-319-31165-4_44
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a computer application (CoA) for wind energy (WEn) bidding strategies (BStr) in a pool-based electricity market (EMar) to better accommodate the variability of the renewable energy (ReEn) source. The CoA is based in a stochastic linear mathematical programming (SLPr) problem. The goal is to obtain the optimal wind bidding strategy (OWBS) so as to maximize the revenue (MRev). Electricity prices (EPr) and financial penalties (FiPen) for shortfall or surplus energy deliver are modeled. Finally, conclusions are addressed from a case study, using data from the pool-based EMar of the Iberian Peninsula.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 24 条
[1]  
Al Faruque MA, 2014, ASIA S PACIF DES AUT, P97, DOI 10.1109/ASPDAC.2014.6742873
[2]  
[Anonymous], 2015, ENERGY 2020 STRATEGY
[3]  
[Anonymous], 2011, IEEE POWER ENERGY MA
[4]  
[Anonymous], P 6 IB C INF SYST TE
[5]  
[Anonymous], 2013, FDN INN CYB PHYS SYS
[6]   Value of combining energy storage and wind in short-term energy and balancing markets [J].
Bathurst, GN ;
Strbac, G .
ELECTRIC POWER SYSTEMS RESEARCH, 2003, 67 (01) :1-8
[7]   Trading wind generation in short term energy markets [J].
Bathurst, GN ;
Weatherill, J ;
Strbac, G .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2002, 17 (03) :782-789
[8]   Renewable Energy Devices and Systems - State-of-the-Art Technology, Research and Development, Challenges and Future Trends [J].
Blaabjerg, Frede ;
Ionel, Dan M. .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2015, 43 (12) :1319-1328
[9]   Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market [J].
Fabbri, A ;
Gómez, T ;
Román, S ;
Abbad, JR ;
Quezada, VHM .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (03) :1440-1446
[10]  
Garcia-Gonzalez J., 2008, P IEEE POW EN SOC GE