Solution of Chance-Constrained Mixed-Integer Nonlinear Programming Problems

被引:4
|
作者
Esche, Erik [1 ]
Mueller, David [2 ]
Werk, Sebastian [3 ]
Grossmann, Ignacio E. [4 ]
Wozny, Guenter [1 ]
机构
[1] Tech Univ Berlin, Proc Dynam & Operat Grp, Sekr KWT 9,Str 17 Juni 135, D-10623 Berlin, Germany
[2] Evon Technol & Infrastruct GmbH, Proc Technol & Engn, CAPE & Automat, Paul Baumann Str 1, D-45772 Marl, Germany
[3] Complevo GmbH, Bismarkstr 10-12, D-10625 Berlin, Germany
[4] Carnegie Mellon Univ, Dpt Chem Engn, Doherty Hall,5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A | 2016年 / 38A卷
关键词
Chance Constraint; MINLP; Optimization; Oxidative Coupling of Methane; OPTIMIZATION; METHANE; MODEL;
D O I
10.1016/B978-0-444-63428-3.50020-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this contribution a framework for the solution of chance-constrained MINLP problems is described and tested to solve of process synthesis problems with strongly nonlinear and non-convex subsystems. The framework can handle the appearance of non-monotonic relationships between uncertain inputs and chance-constrained outputs, the appearance of multiple roots in the chance constraint evaluation, and performs extensive result recycling to ensure a robust performance despite the structural changes implemented by the MINLP optimization solver. The framework can be interfaced with optimization and simulation solvers programmed in C++, Fortran, and Python. As a first application the process synthesis of the oxidative coupling of methane with a focus on the removal of carbon dioxide from the product stream is investigated.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 50 条
  • [31] CHANCE-CONSTRAINED EQUIVALENTS OF SOME STOCHASTIC PROGRAMMING PROBLEMS
    SYMONDS, GH
    OPERATIONS RESEARCH, 1968, 16 (06) : 1152 - &
  • [32] Sample approximation technique for mixed-integer stochastic programming problems with several chance constraints
    Branda, Martin
    OPERATIONS RESEARCH LETTERS, 2012, 40 (03) : 207 - 211
  • [33] UNDECIDABILITY AND HARDNESS IN MIXED-INTEGER NONLINEAR PROGRAMMING
    Liberti, Leo
    RAIRO-OPERATIONS RESEARCH, 2019, 53 (01) : 81 - 109
  • [34] An Integer Programming and Decomposition Approach to General Chance-Constrained Mathematical Programs
    Luedtke, James
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2010, 6080 : 271 - 284
  • [35] Fuzzy Programming for Mixed-Integer Optimization Problems
    Lin, Yung-Chin
    Lin, Yung-Chien
    Su, Kuo-Lan
    Lin, Wei-Cheng
    Chen, Tsing-Hua
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 261 - 264
  • [36] Fuzzy programming for mixed-integer optimization problems
    Lin Y.-C.
    Lin Y.-C.
    Su K.-L.
    Lin W.-C.
    Chen T.-H.
    Artificial Life and Robotics, 2011, 16 (2) : 174 - 177
  • [37] Chance-Constrained Convex Mixed-Integer Optimization and Beyond: Two Sampling Algorithms within S-Optimization
    De Loera, J. A.
    La Haye, R. N.
    Oliveros, D.
    Roldan-Pensado, E.
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (01) : 201 - 218
  • [38] A NOTE ON CHANCE-CONSTRAINED PROGRAMMING
    HEILMANN, WR
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1983, 34 (06) : 533 - 537
  • [39] Mixed-integer programming models for nesting problems
    Fischetti, Matteo
    Luzzi, Ivan
    JOURNAL OF HEURISTICS, 2009, 15 (03) : 201 - 226
  • [40] MIXED-INTEGER BILINEAR-PROGRAMMING PROBLEMS
    ADAMS, WP
    SHERALI, HD
    MATHEMATICAL PROGRAMMING, 1993, 59 (03) : 279 - 305