Boundary control of the Korteweg-de Vries-Burgers equation: Further results on stabilization and well-posedness, with numerical demonstration

被引:76
作者
Balogh, A [1 ]
Krstic, M [1 ]
机构
[1] Univ Calif San Diego, Dept MAE, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
global stabilization; Korteweg-de Vries-Burgers equation; nonlinear boundary feedback control;
D O I
10.1109/9.880639
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the Korteweg-de Vries-Burgers (KdVB) equation on the interval [0,1], Motivated by simulations resulting in modest decay rates with recently proposed control laws by Liu and Krstic which keeps some of the boundary conditions as homogeneous, we propose a strengthened set of feedback boundary conditions. We establish stability properties of the closed-loop system, prove well-posedness and illustrate the performance improvement by a simulation example.
引用
收藏
页码:1739 / 1745
页数:7
相关论文
共 18 条
[1]  
Barbu V., 1993, ANAL CONTROL NONLINE
[2]  
BILER P, 1984, B POLISH ACAD SCI MA, V32, P275
[3]   The effect of dissipation on solutions of the generalized Korteweg-deVries equation [J].
Bona, JL ;
Dougalis, VA ;
Karakashian, OA ;
McKinney, WR .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 74 (1-2) :127-154
[4]  
BONA JL, 1975, PHILOS T ROY SOC A, P55
[5]   On the global dynamics of a controlled viscous burgers' equation [J].
Byrnes Ch.I. ;
Gilliam D.S. ;
Shubov V.I. .
Journal of Dynamical and Control Systems, 1998, 4 (4) :457-519
[6]   GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES [J].
CRANDALL, MG ;
LIGGETT, TM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (02) :265-&
[7]  
Ferziger J.H., 2019, Computational Methods for Fluid Dynamics
[8]   Numerical solution of the Korteweg-de Vries (KdV) equation [J].
Jain, PC ;
Shankar, R ;
Bhardwaj, D .
CHAOS SOLITONS & FRACTALS, 1997, 8 (06) :943-951
[9]  
LADYZHENSKAYA OA, 1968, TRANSL AMS, V23
[10]  
LASIECKA I., 1993, DIFFERENTIAL INTEGRA, V6, P507