Branching rules for modular fundamental representations of symplectic groups

被引:14
作者
Baranov, AA [1 ]
Suprunenko, ID [1 ]
机构
[1] Natl Acad Sci, Minsk 220072, BELARUS
关键词
D O I
10.1112/S002460930000727X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, branching rules for the fundamental representations of the symplectic groups in positive characteristic are found. The submodule structure of the restrictions of the fundamental modules for the group Sp(2n)(K) to the naturally embedded subgroup Sp(2n-2)(K) is determined. As a corollary, inductive systems of fundamental representations for Sp(infinity)(K) are classified. The submodule structure of the fundamental Weyl modules is refined.
引用
收藏
页码:409 / 420
页数:12
相关论文
共 13 条
[1]  
Adamovich A. M., 1984, VESTN MOSK U MAT M+, V39, P53
[2]  
BARANOV AA, UNPUB MINIMAL INDUCT
[3]  
DONKIN S, 1985, LECT NOTES MATH, V1140, P1
[4]   Construction of p-1 irreducible modules with fundamental highest weight for the symplectic group in characteristic p [J].
Gow, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :619-632
[5]   THE WEYL MODULES AND THE IRREDUCIBLE REPRESENTATIONS OF THE SYMPLECTIC GROUP WITH THE FUNDAMENTAL HIGHEST WEIGHTS [J].
PREMET, AA ;
SUPRUNENKO, ID .
COMMUNICATIONS IN ALGEBRA, 1983, 11 (12) :1309-1342
[6]   Branching rules for two row partitions and applications to the inductive systems for symmetric groups [J].
Sheth, J .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (07) :3303-3316
[7]   IRREDUCIBLE MODULES AND PARABOLIC SUBGROUPS [J].
SMITH, SD .
JOURNAL OF ALGEBRA, 1982, 75 (01) :286-289
[8]  
Steinberg R., 1967, LECT CHEVALLEY GROUP
[9]  
SUPRUNENKO ID, 1987, VESISI AKAD NAVUK BE, V6, P9
[10]  
ZALESSKII AE, 1995, NATO ADV SCI I C-MAT, V471, P219