DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data

被引:115
|
作者
DePasquale, Erica A. K. [1 ,2 ]
Schnell, Daniel J. [1 ,3 ,4 ]
Van Camp, Pieter-Jan [1 ,2 ]
Valiente-Alandi, Inigo [3 ,4 ]
Blaxall, Burns C. [3 ,4 ,5 ]
Grimes, H. Leighton [5 ,6 ,7 ,8 ]
Singh, Harinder [9 ,10 ,11 ]
Salomonis, Nathan [1 ,2 ,5 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Dept Biomed Informat, Cincinnati, OH 45221 USA
[3] Cincinnati Childrens Hosp Med Ctr, Heart Inst, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Ctr Translat Fibrosis Res, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Pediat, Cincinnati, OH 45221 USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Immunobiol, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Ctr Syst Immunol, Cincinnati, OH 45229 USA
[8] Cincinnati Childrens Hosp Med Ctr, Div Expt Hematol & Canc Biol, Cincinnati, OH 45229 USA
[9] Univ Pittsburgh, Ctr Syst Immunol, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Dept Immunol, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15620 USA
来源
CELL REPORTS | 2019年 / 29卷 / 06期
关键词
PROGENITORS;
D O I
10.1016/j.celrep.2019.09.082
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Methods for single-cell RNA sequencing (scRNA-seq) have greatly advanced in recent years. While droplet- and well-based methods have increased the capture frequency of cells for scRNA-seq, these technologies readily produce technical artifacts, such as doublet cell captures. Doublets occurring between distinct cell types can appear as hybrid scRNA-seq profiles, but do not have distinct transcriptomes from individual cell states. We introduce DoubletDecon, an approach that detects doublets with a combination of deconvolution analyses and the identification of unique cell-state gene expression. We demonstrate the ability of DoubletDecon to identify synthetic, mixed-species, genetic, and cell-hashing cell doublets from scRNA-seq datasets of varying cellular complexity with a high sensitivity relative to alternative approaches. Importantly, this algorithm prevents the prediction of valid mixed-lineage and transitional cell states as doublets by considering their unique gene expression. DoubletDecon has an easy-to-use graphical user interface and is compatible with diverse species and unsupervised population detection algorithms.
引用
收藏
页码:1718 / +
页数:18
相关论文
共 50 条
  • [1] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [2] Single-Cell RNA-Sequencing in Glioma
    Eli Johnson
    Katherine L. Dickerson
    Ian D. Connolly
    Melanie Hayden Gephart
    Current Oncology Reports, 2018, 20
  • [3] Transcriptomics and single-cell RNA-sequencing
    Chambers, Daniel C.
    Carew, Alan M.
    Lukowski, Samuel W.
    Powell, Joseph E.
    RESPIROLOGY, 2019, 24 (01) : 29 - 36
  • [4] Single-Cell RNA-Sequencing in Glioma
    Johnson, Eli
    Dickerson, Katherine L.
    Connolly, Ian D.
    Gephart, Melanie Hayden
    CURRENT ONCOLOGY REPORTS, 2018, 20 (05)
  • [5] Single-cell RNA-sequencing of the brain
    Duran, Raquel Cuevas-Diaz
    Wei, Haichao
    Wu, Jia Qian
    CLINICAL AND TRANSLATIONAL MEDICINE, 2017, 6
  • [6] scds: computational annotation of doublets in single-cell RNA sequencing data
    Bais, Abha S.
    Kostka, Dennis
    BIOINFORMATICS, 2020, 36 (04) : 1150 - 1158
  • [7] Vaeda computationally annotates doublets in single-cell RNA sequencing data
    Schriever, Hannah
    Kostka, Dennis
    BIOINFORMATICS, 2023, 39 (01)
  • [8] Significance analysis for clustering with single-cell RNA-sequencing data
    Grabski, Isabella N.
    Street, Kelly
    Irizarry, Rafael A.
    NATURE METHODS, 2023, 20 (08) : 1196 - +
  • [9] Significance analysis for clustering with single-cell RNA-sequencing data
    Isabella N. Grabski
    Kelly Street
    Rafael A. Irizarry
    Nature Methods, 2023, 20 : 1196 - 1202
  • [10] Clustering and classification methods for single-cell RNA-sequencing data
    Qi, Ren
    Ma, Anjun
    Ma, Qin
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1196 - 1208