GLOBAL SOLUTIONS OF A KELLER-SEGEL SYSTEM WITH SATURATED LOGARITHMIC SENSITIVITY FUNCTION

被引:12
作者
Wang, Qi [1 ]
机构
[1] Southwestern Univ Finance Econ, Dept Math, Chengdu 611130, Sichuan, Peoples R China
关键词
Chemotaxis; global existence; logarithmic sensitivity; PARABOLIC CHEMOTAXIS SYSTEM;
D O I
10.3934/cpaa.2015.14.383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Keller-Segel type chemotaxis model with a modified sensitivity function in a bounded domain Omega subset of R-N, N >= 2. The global existence of classical solutions to the fully parabolic system is established provided that the ratio of the chemotactic coefficient to the motility of cells is not too large.
引用
收藏
页码:383 / 396
页数:14
相关论文
共 28 条
[1]  
Amann H., 1993, FUNCTION SPACES DIFF, P9
[2]  
[Anonymous], J MATH BIOL
[3]  
[Anonymous], 1993, Geometric Theory of Semilinear Parabolic Equations, DOI DOI 10.1007/BFB0089647
[4]  
[Anonymous], 2003, I. Jahresber. Deutsch. Math.-Verein.
[5]   Signal transduction in bacterial chemotaxis [J].
Baker, MD ;
Wolanin, PM ;
Stock, JB .
BIOESSAYS, 2006, 28 (01) :9-22
[6]  
Biler P., 1999, Adv. Math. Sci. Appl, V9, P347
[7]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[8]   Chemotactic cell movement during Dictyostelium development and gastrulation [J].
Dormann, Dirk ;
Weijer, Cornelis J. .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (04) :367-373
[9]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[10]  
Hillen T, 2007, DISCRETE CONT DYN-B, V7, P125