Estimating a distribution function in the presence of auxiliary information

被引:7
作者
Zhang, B [1 ]
机构
[1] Univ Toledo, Dept Math, Toledo, OH 43606 USA
关键词
empirical likelihood; Gaussian process; relative efficiency; weak convergence;
D O I
10.1007/BF02717176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For estimating the distribution function F of a population, the empirical or sample distribution function F-n has been studied extensively. Qin and Lawless (1994) have proposed an alternative estimator (F) over cap(n)$ for estimating F in the presence of auxiliary information under a semiparametric model. They have also proved the point-wise asymptotic normality of (F) over cap(n)$. In this paper, we establish the weak convergence of (F) over cap(n)$, to a Gaussian process and show that the asymptotic variance function of (F) over cap(n)$, is uniformly smaller than that of F-n. As an application of (F) over cap(n)$, we propose to employ the mean (X) over bar and variance <(S)over cap (2)(n)> of (F) over cap(n)$, to estimate the population mean and variance in the presence of auxiliary information. A. simulation study is presented to assess the finite sample performance of the proposed estimators (F) over cap(n)$, (X) over bar, and <(S)over cap (2)(n)>.
引用
收藏
页码:221 / 244
页数:24
相关论文
共 50 条
[41]   Efficient Estimation of the Cox Model with Auxiliary Subgroup Survival Information [J].
Huang, Chiung-Yu ;
Qin, Jing ;
Tsai, Huei-Ting .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) :787-799
[42]   Semiparametric estimation of the nonmixture cure model with auxiliary survival information [J].
Han, Bo ;
Van Keilegom, Ingrid ;
Wang, Xiaoguang .
BIOMETRICS, 2022, 78 (02) :448-459
[43]   QUANTILE ESTIMATION WITH AUXILIARY INFORMATION UNDER POSITIVELY ASSOCIATED SAMPLES [J].
Li, Yinghua ;
Qin, Yongsong ;
Lei, Qingzhu ;
Li, Lifeng .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (02) :453-468
[44]   Estimating the innovation distribution in nonparametric autoregression [J].
Mueller, Ursula U. ;
Schick, Anton ;
Wefelmeyer, Wolfgang .
PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (1-2) :53-77
[45]   ON ESTIMATING THE MEAN FUNCTION OF A GAUSSIAN PROCESS [J].
ANILKUMAR, P .
STATISTICS & PROBABILITY LETTERS, 1994, 19 (01) :77-84
[46]   Estimating function approach for CHARN Models [J].
Kanai, Hiroomi ;
Ogata, Hiroaki ;
Taniguchi, Masanobu .
METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2010, 68 (01) :1-21
[47]   Estimating function approach for CHARN models [J].
Kanai H. ;
Ogata H. ;
Taniguchi M. .
METRON, 2010, 68 (1) :1-21
[48]   EMPIRICAL LIKELIHOOD ESTIMATION FOR FINITE POPULATIONS AND THE EFFECTIVE USAGE OF AUXILIARY INFORMATION [J].
CHEN, JH ;
QIN, J .
BIOMETRIKA, 1993, 80 (01) :107-116
[49]   ESTIMATION OF GEOMETRIC MEAN OF SKEWED POPULATIONS WITH AND WITHOUT USING AUXILIARY INFORMATION [J].
Misra, Sheela ;
Gupta, Rajesh K. .
JOURNAL OF RELIABILITY AND STATISTICAL STUDIES, 2010, 3 (02) :35-46
[50]   Estimating and depicting the structure of a distribution of random functions [J].
Hall, P ;
Heckman, NE .
BIOMETRIKA, 2002, 89 (01) :145-158