(λ, ν) -Statistical Convergence on a Product Time Scale

被引:0
作者
Cinar, Muhammed [1 ]
Yilmaz, Emrah [2 ]
Altin, Yavuz [2 ]
Et, Mikail [2 ]
机构
[1] Mus Alparslan Univ, Dept Math, Mus, Turkey
[2] Firat Univ, Dept Math, Elazig, Turkey
来源
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS | 2019年 / 51卷 / 11期
关键词
Statistical convergence; Time scale; Summability; DYNAMIC EQUATIONS; CALCULUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give definition of (lambda,nu)(-) statistical convergence on a product time scale. Furthermore, we generalize de la Vallee Poussin mean and define strongly (V,lambda,nu) and [V,lambda,nu](psi 2)(p)(-) summable functions, statistical limit superior and inferior on a product time scale. Then, a few inclusion relations are expressed between the sets of (V,lambda,nu)(-)summable, (p-)strongly [V,lambda,nu](psi 2)(p)(-)summable and (lambda,nu)(-)statistical convergent functions. Furthermore, some theorems are proved related to statistical limit superior and inferior on a product time scale.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 41 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]   Uniform Statistical Convergence on Time Scales [J].
Altin, Yavuz ;
Koyunbakan, Hikmet ;
Yilmaz, Emrah .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[3]  
Bohner M, 2004, DYNAM SYST APPL, V13, P351
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[5]  
Bohner M., 2006, ADV DIFFER EQU-NY, V2006
[6]  
Bohner M., 2017, Multivariable Dynamic Calculus on Time Scales
[7]   Double integral calculus of variations on time scales [J].
Bohner, Martin ;
Guseinov, Gusein Sh. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (01) :45-57
[8]   Inverse Problems for Sturm-Liouville Difference Equations [J].
Bohner, Martin ;
Koyunbakan, Hikmet .
FILOMAT, 2016, 30 (05) :1297-1304
[9]  
BORWEIN D, 1965, J LONDON MATH SOC, V40, P628
[10]   Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral;: application to the calculus of Δ-antiderivatives [J].
Cabada, A ;
Vivero, DR .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (1-2) :194-207