Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes

被引:158
作者
Hsu, Shih-Chieh [1 ]
Lu, Chungsying [1 ]
Su, Fengsheng [1 ]
Zeng, Wanting [1 ]
Chen, Wenfa [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Environm Engn, Taichung 402, Taiwan
关键词
Carbon nanotubes; Isosteric heat of adsorption; Cyclic CO2 adsorption; GREENHOUSE-GAS; MOLECULAR-SIEVE; COMPOSITE FILMS; FLUE-GAS; CAPTURE; SEPARATION; DIOXIDE; ADSORBENT; ZEOLITES; REMOVAL;
D O I
10.1016/j.ces.2009.10.005
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Multiwalled carbon nanotubes (CNTs) were fabricated and modified by 3-aminopropyl-triethoxysilane (APTS) solutions to study thermodynamics and regeneration Of CO2 adsorption from gas streams. The CO2 adsorption capacities of CNTs and CNT(APTS) decreased with temperature indicating the exothermic nature of adsorption process while the thermodynamic analysis gave low isosteric heats of adsorption, which are typical for physical adsorption. The cyclic CO2 adsorption on CNT(APTS) showed that the adsorbed CO2 could be effectively desorbed via thermal treatment at 120 degrees C for 25 min while the adsorbed CO2 due to physical interaction could be effectively desorbed via vacuum suction at 0.145 atm for 30 min. If a combination of thermal and vacuum desorption was conducted at 120 degrees C and 0.145 atm, the time for effectively desorbing CO2 could be further shortened to 5 min. The adsorption capacities and the physicochemical properties of CNT(APTS) were preserved during 20 cycles of adsorption and regeneration. These results suggest that the CNT(APTS) can be stably employed in prolonged cyclic operation and they are thus possibly cost-effective sorbents for CO2 capture from flue gases. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1354 / 1361
页数:8
相关论文
共 33 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]   Adsorption equilibrium of organic vapors on single-walled carbon nanotubes [J].
Agnihotri, S ;
Rood, MJ ;
Rostam-Abadi, M .
CARBON, 2005, 43 (11) :2379-2388
[3]  
[Anonymous], 2005, Prepared by Working Group III of the Intergovernmental Panel on Climate Change
[4]   Removal of CO2 greenhouse gas by ammonia scrubbing [J].
Bai, HL ;
Yeh, AC .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (06) :2490-2493
[5]   CO2 Capture Technologies for Cement Industry [J].
Bosoaga, Adina ;
Masek, Ondrej ;
Oakey, John E. .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :133-140
[6]   In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl)triethoxysilane [J].
Chang, ACC ;
Chuang, SSC ;
Gray, M ;
Soong, Y .
ENERGY & FUELS, 2003, 17 (02) :468-473
[7]   Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies [J].
Chatti, Ravikrishna ;
Bansiwal, Amit K. ;
Thote, Jayashri A. ;
Kumar, Vivek ;
Jadhav, Pravin ;
Lokhande, Satish K. ;
Biniwale, Rajesh B. ;
Labhsetwar, Nitin K. ;
Rayalu, Sadhana S. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 121 (1-3) :84-89
[8]   CO2 adsorption in single-walled carbon nanotubes [J].
Cinke, M ;
Li, J ;
Bauschlicher, CW ;
Ricca, A ;
Meyyappan, M .
CHEMICAL PHYSICS LETTERS, 2003, 376 (5-6) :761-766
[9]   Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture [J].
Cormos, Calin-Cristian ;
Starr, Fred ;
Tzimas, Evangelos ;
Peteves, Stathis .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (04) :1286-1294
[10]  
Ebbing DarrellD., 1999, General chemistry